Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 8

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 126
|
issue 5
1125-1127
EN
Methodology of impedance measurements and ferroelectric hysteresis loops observed in temperature range 292-475 K for antimony sulfoiodide (SbSI) grown from vapour phase are discussed. Temperature dependences of spontaneous polarization and coercive field of SbSI crystals are presented.
2
100%
|
|
vol. 126
|
issue 5
1093-1095
EN
Different optical energy gaps in ferroelectric and paraelectric phases as well as light scattering on domain walls allow to observe ferroelectric domains in antimony sulfoiodide (SbSI) near the Curie temperature. Mobility 8.11(44)× 10^{-8} m^2/(Vs) of ferroelectric domain walls under external electric field has been determined along c-axis of SbSI single crystals using optical transmittance microscopy.
3
Content available remote

Optical Properties of SbSI Photonic Crystals

88%
|
|
vol. 126
|
issue 5
1115-1117
EN
This paper presents optical properties of SiO_2 opals infiltrated with SbSI and inverted SbSI opals for the first time. Registered reflectance spectra exhibit Bragg's peaks connected with photonic band gap. Calculated photonic band structure has been compared with experimental results.
4
Content available remote

SbSI Single Nanowires as Humidity Sensors

88%
EN
For the first time influence of humidity on photoconductivity transient characteristics are studied for antimony sulfoiodide (SbSI) single nanowires. While negative photoconductivity is observed for SbSI gel, made up of large quantity of nanowires, only the positive effect occurs for SbSI single nanowires. Photoconductivity current response on switching on and off illumination in moist N_{2} represents so-called hook anomaly.
EN
For the first time the thermal desorption of H_2, N_2, O_2 and CO_2 is presented for antimony sulfoiodide (SbSI) xerogel made up of large quantity nanowires. The desorption has been observed near ferroelectric phase transition established at T_{c}=293.0(2) K. The Sievert measurements have shown that the hydrogen uptake is linear function of H_2 pressure (when p < 1.1×10^5 Pa). The hydrogen storage density in SbSI gel amounted 1.24× 10^{-2} wt% (for p = 1.08×10^5 Pa at room temperature).
6
Content available remote

Fabrication of SbSI Photonic Crystals

76%
EN
Semiconducting ferroelectric antimony sulfoiodide (SbSI) photonic crystals were fabricated. The SiO_{2} nanospheres were synthesized and gravity sedimented to obtain opal matrices. These opals were infiltrated with melted SbSI and etched in HF acid to produce inverted SbSI opals.
EN
For the first time current quantization is reported for antimony sulfoiodide (SbSI) nanowires. It has been registered in current responses on electric field switching as well as on illumination on and off. Current steps determined in all experiments have been equal to each other within the experimental error. It has been explained by the quantized change of free carrier concentration in nanowire. Lateral dimensions of SbSI nanowires estimated from quantum steps are comparable with geometrical data reported for the same technology of material preparation.
EN
Nanoparticles of chalcopyrites copper indium gallium sulfide (CuIn_{x}Ga_{1-x}S_{2} or CIGS) and copper indium gallium selenide (CuIn_{x}Ga_{1-x}Se_{2} or CIGSe) were fabricated sonochemically. They were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, high resolution transmission electron microscopy, selected area electron diffraction, and diffuse reflectance spectroscopy. The electrical and photoelectrical properties of the fabricated nanomaterials were investigated.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.