Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Acta Physica Polonica A
|
2015
|
vol. 128
|
issue 4
479-486
EN
The mechanical performance of ultrafine-grained materials is strongly influenced by the lattice defect structure, i.e. the vacancy concentration, the type, arrangement and density of dislocations, the planar fault probability, as well as the amount and character of grain boundaries. In this paper, the correlation between the processing conditions, the lattice defect structure and the plastic behavior of ultrafine-grained materials is overviewed. For the processing route of severe plastic deformation, the influence of applied strain, hydrostatic pressure, as well as melting point, stacking fault energy and alloying on grain size, dislocation density and strength is studied. For nanopowder sintering techniques, the effect of atmosphere, temperature and time of consolidation on lattice defects and mechanical properties is discussed in detail.
EN
The plastic behavior of face-centered cubic metals was investigated over a wide range of strain and testing temperature. The experimental stress-strain data were described using both macroscopic and microscopic, well-established relationships. The characteristics of these descriptions are discussed and compared with each other. The analysis of the characteristics leads to a definition of the low and high temperature deformation regions, where the kinetics of both the dislocation-multiplication and the dislocation-annihilation (recovery) are different. For pure aluminum, it is shown that the boundary between these two regions occurs at a homologous temperature of the order of ≈ 0.5 T_{m} where T_{m} is the absolute melting temperature. From this analysis, correlations are also drawn between the macroscopic parameters describing the stress-strain relationship and the fundamental characteristics of the microscopic processes both at room temperature and elevated temperatures.
EN
The object of the present paper is the study of mechanical properties and microstructural evolution of AX41 magnesium alloy, severely deformed using a combination of hot extrusion and equal channel angular pressing. Equal channel angular pressing processing was performed at 250°C following route Bc. Mechanical properties of the ultrafine-grained alloy were investigated in tension at a constant strain rate of 10^{-4} s^{-1} at room temperature and 100°C. The dislocation density was determined by X-ray line profiles analysis. Microstructural observations performed by electron backscattering diffraction after 8 passes of equal channel angular pressing revealed very fine and homogeneous microstructure with a grain size of 0.3-6 μm. It has been found that the room temperature mechanical properties such as yield stress and tensile strength reach their maximum value even after the first pass which is in good agreement with the evolution of the dislocation density. Further processing by equal channel angular pressing led to the decrease in both the yield strength and the dislocation density, despite the slight grain size refinement.
EN
The evolution of the dislocation structure in randomly textured cast magnesium as a function of loading mode is studied using whole neutron diffraction pattern line profile analysis and elasto-plastic self-consistent modeling. Both the experimental results and the theoretical data indicate the onset of basal slip at low stresses and the key role of prismatic slip in the macroscopic yield. Dependence of the second-order pyramidal slip on the loading mode is revealed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.