Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the previous study (Podlubnaya et al., 1999, J. Struc. Biol. 127, 1-15) Ca2+-induced reversible structural transitions in synthetic filaments of pure fast skeletal and cardiac muscle myosins were observed under rigor conditions (-Ca2+/+ Ca2+). In the present work these studies have been extended to new more order-producing conditions (presence of ATP in the absence of Ca2+) aimed at arresting the relaxed structure in synthetic filaments of both fast and slow skeletal muscle myosin. Filaments were formed from column-purified myosins (rabbit fast skeletal muscle and rabbit slow skeletal semimebranosus proprius muscle). In the presence of 0.1 mM free Ca2+, 3 mM Mg2+ and 2 mM ATP (activating conditions) these filaments had a spread structure with a random arrangement of myosin heads and subfragments 2 protruding from the filament backbone. Such a structure is indistinguishable from the filament structures observed previously for fast skeletal, cardiac (see reference cited above) and smooth (Podlubnaya et al., 1999, J. Muscle Res. Cell Motil. 20, 547-554) muscle myosins in the presence of 0.1 mM free Ca2+. In the absence of Ca2+ and in the presence of ATP (relaxing conditions) the filaments of both studied myosins revealed a compact ordered structure. The fast skeletal muscle myosin filaments exhibited an axial periodicity of about 14.5 nm and which was much more pronounced than under rigor conditions in the absence of Ca2+ (see the first reference cited). The slow skeletal muscle myosin filaments differ slightly in their appearance from those of fast muscle as they exhibit mainly an axial repeat of about 43 nm while the 14.5 nm repeat is visible only in some regions. This may be a result of a slightly different structural properties of slow skeletal muscle myosin. We conclude that, like other filaments of vertebrate myosins, slow skeletal muscle myosin filaments also undergo the Ca2+-induced structural order-disorder transitions. It is very likely that all vertebrate muscle myosins possess such a property.
2
Content available remote

Erratum (Vol. 47, No. 4/2000, 1007-1017)

100%
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.