Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In only the past century, the landscape of breast cancer treatment has completely changed. The Halstedian hypothesis of the “contiguous spread” of breast cancer has been replaced by a consideration of its systemic nature. Today, patients with early-stage breast cancer are managed with breast-conserving therapy, which is as effective as mastectomy. Sentinel lymph node biopsy has largely replaced axillary lymph node dissection. Post-operative radiotherapy, chemotherapy and endocrine therapy have increased survival. Pre-operative cytotoxic therapy allows for less extensive surgery and for a curative resection even in more advanced stages. Rapid progress in molecular oncology revealed a large heterogeneity of breast cancer, resulting in a more personalized approach. Targeted therapies directed against epidermal growth factor receptor type 2 (HER2) have improved survival in HER2-positive breast cancer, which was once a poor-prognosis entity. Multi-gene prognostic signatures better predict prognosis and allow many patients to avoid chemotherapy. Personalized treatment has resulted in decreased toxicity and an improved quality of life. Within the past decades, breast cancer has become a good-prognosis malignancy with a five-year survival in the range of 80-85%. Future development of personalized medicine may further refine treatment based on the tumor’s molecular features.
EN
Introduction. Blood biomarkers may support early diagnosis of lung cancer by enabling pre-selection of candidates for computed tomography screening or discrimination between benign and malignant screening-detected nodules. We aimed to identify features of serum metabolome distinguishing individuals with early-detected lung cancer from healthy participants of the lung cancer screening program. Methods. Blood samples were collected in the course of a low-dose computed tomography screening program performed in the Gdansk district (Northern Poland). The analysis included 31 patients with screening-detected lung cancer and the pair-matched group of 92 healthy controls. The gas chromatography coupled to mass spectrometry (GC/MS) approach was used to identify and quantify small metabolites present in serum. Results. There were several metabolites detected in the sera whose abundances discriminated patients with lung cancer from controls. Majority of the differentiating components were downregulated in cancer samples, including amino acids, carboxylic acids and tocopherols, whereas benzaldehyde was the only compound significantly upregulated. A classifier including nine serum metabolites allowed separation of cancer and control samples with 100% sensitivity and 95% specificity. Conclusions. Signature of serum metabolites discriminating between cancer patients and healthy participants of the early lung cancer screening program was identified using a GC/MS metabolomics approach. This signature, though not validated in an independent dataset, deserves further investigation in a larger cohort study.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.