Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Maf1 was the first protein discovered to regulate polymerase III RNA in yeast and because it is evolutionarily conserved, a Maf1 ortholog also serves to restrain transcription in mouse and human cells. Understanding the mechanism of the regulation has been made possible by recent studies showing that Maf1 is a nuclear/cytoplasmic protein whose subcellular distribution and hence negative regulation of Pol III transcription is mediated by the nutrient-sensing signaling pathways, TOR and RAS. Under stress conditions and during growth in a nonfermentable carbon source Maf1 is dephosphorylated and imported to the nucleus. In its non-phosphorylated form, Maf1 interacts with the polymerase III transcription machinery. Phosphorylation serves to locate Maf1 to the cytoplasm under favorable growth conditions, thereby preventing it from non-negatively regulating polymerase III when high levels of tRNA transcription are required. Relocation of Maf1 to the cytoplasm is dependent on Msn5, a carrier responsible for export of several other phosphoproteins out of the nucleus. The absence of Maf1-mediated control of tRNA synthesis impairs yeast viability in nonfermentable carbon sources. Moreover, in cells grown in a nonfermentable carbon source, Maf1 regulates the levels of different tRNAs to various extents. This differential regulation may contribute to the physiological role of Maf1.
|
2000
|
vol. 47
|
issue 4
973-991
EN
In contrast to most other eukaryotic organisms, yeast can survive without respiration. This ability has been exploited to investigate nuclear genes required for expression of mitochondrial DNA. Availability of complete Saccharomyces cerevisiae genomic sequence has provided additional help in detailed molecular analysis. Seven of the eight major products encoded by mitochondrial DNA are hydrophobic subunits of respiratory complexes in the inner membrane. Localization of the translation process in the same cellular compartment ensures synthesis of mitochondrially encoded proteins near sites of their assembly into multimeric respiratory complexes. Association of mitochondrial ribosomes with the membrane is mediated by mRNA-specific translational activators, that are involved in the recognition of initation codon. The newly synthesized mitochondrial proteins are transferred to membrane by a specific export system. This review discusses the role of membrane-localized factors responsible for quality control and turnover of mitochondrially synthesized subunits as well as for assembly of respiratory complexes.
|
2005
|
vol. 52
|
issue 1
129-137
EN
Yeast mitochondrial DNA codes for eight major polypeptides. Translation of he mitochondrially encoded polypeptides in strains with mutated mitochondrial release factor, mRF1, was found to result in the synthesis of a novel protein, V2. Different mrf1 alleles were associated with different efficiency of V2p synthesis. Translation of V2p was enhanced by paromomycin. Comparative analysis of peptides resulting from protease digestion indicated that V2p is a derivative of Var1p. According to our hypothesis, V2p represents a readthrough product of the natural stop codon in VAR1 mRNA.
EN
Dimethylallyl diphosphate, an isomer of isopentenyl diphosphate, is a common substrate of Mod5p, a tRNA modifying enzyme, and the farnesyl diphosphate synthase Erg20p, the key enzyme of the isoprenoid pathway. rsp5 mutants, defective in the Rsp5 ubiquitin-protein ligase, were isolated and characterized as altering the mitochondrial/cytosolic distribution of Mod5p. To understand better how competition for the substrate determines the regulation at the molecular level, we analyzed the effect of the rsp5-13 mutation on Erg20p expression. The level of Erg20p was three times lower in rsp5-13 compared to the wild type strain and this effect was dependent on active Mod5p. Northern blot analysis indicated a regulatory role of Rsp5p in ERG20 transcription. ERG20 expression was also impaired in pkc1Δ lacking a component of the cell wall integrity signaling pathway. Low expression of Erg20p in rsp5 cells was accompanied by low level of ergosterol, the main end product of the isoprenoid pathway. Additionally, rsp5 strains were resistant to nystatin, which binds to ergosterol present in the plasma membrane, and sensitive to calcofluor white, a drug destabilizing cell wall integrity by binding to chitin. Furthermore, the cell wall structure appeared abnormal in most rsp5-13 cells investigated by electron microscopy and chitin level in the cell wall was increased two-fold. These results indicate that Rsp5p affects the isoprenoid pathway which has important roles in ergosterol biosynthesis, protein glycosylation and transport and in this way may influence the composition of the plasma membrane and cell wall.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.