Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Hydroxyapatite is the main component of natural hard tissues, such as teeth and bone. It has been studied extensively as a candidate biomaterial for its use in prosthetic applications. Hydroxyapatite was formulated as Ca_{10}(PO_4)_6(OH)_2 and it has a high stability under physiological conditions. Also hydroxyapatite can be synthesized using different calcium and phosphorus precursors. In this study, biomimetic hydroxyapatite powder has been synthesized simulating physiological conditions. Synthetic body fluids which have the same composition as human blood plasma instead of pure water were used as precipitation media to obtain biological conditions. Recent research involved the effect of different Ca-precursors however aim of this study is to determine the effect of phosphorus resources. In this study, the synthesis of hydroxyapatite powder is carried out by using biomimetic method in synthetic body fluids. Calcium acetate [Ca(CH_3COO)_2, CA] and diammonium hydrogen phosphate [(NH_4)_2HPO_4, DAHP], ammonium dihydrogen phosphate [NH_4H_2PO_4, ADHP], dipotassium hydrogen phosphate [K_2HPO_4, DPHP] and orthophosphoric acid [H_3PO_4, OPA] were used as Ca- and P-precursors. Chemical structures of synthesized powders have been examined by Fourier transform infrared and X-ray diffraction. Results showed that synthesized powders have a pure hydroxyapatite structure. However, ADHP precursors have an unfavorable effect on sintered hydroxyapatite powders. Using ADHP phase transition was caused in pure hydroxyapatite structure and apatite and whitlockite were observed as secondary phases. Their particle size, surface area determination and morphological structures have been characterized by Zeta-Sizer, biomimetic hydroxyapatite the Brunauer-Emmett-Teller analysis and scanning electron microscopy images, respectively. As a result different starting materials have affected the structure, particle size and morphological properties of biomimetic hydroxyapatite.
EN
In this study the effect of H₃BO₃ on the properties of Ni-B coating formed on the AISI 1020 steel surface produced with electroplating process was investigated. Synthesis of the coatings was done using acidic electro plating bath. Coating process was carried out within a standard cell with three electrode system using platinum as auxiliary and Ag/AgCl electrode as a reference electrode onto AISI 1020 steel substrate. Then, heat treatment was applied to coatings at 400°C during a period of 1 h. The coated samples were analyzed by optical microscope, scanning electron microscope, and X-ray diffraction. Micro hardness measurements of the coatings were realized. The study reveals that the Ni-B anti corrosion coating is amorphous in their as-plated condition and upon heat treatment at 400°C for 1 h, Ni-B coatings crystallize and produce nickel borides and nickel in the coatings. The results indicated the presence of Ni₂B, Ni₃B and Ni phases.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.