Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
A novel environmental friendly, room temperature route using an ionic liquid 1-n-butyl-3-methylimidazolium hydroxide ([BMIM]OH) for the synthesis of Mn3O4 nanoparticles is presented. The product was characterized using Fourier transform infrared spectroscopy, X-ray powder diffraction, and transmission electron microscopy. Phase purity was confirmed by XRD, and X-ray line profile fitting determined a crystallite size of 42 ± 11 nm. TEM analysis revealed various morphologies. EPR measurements have indicated the existence of long-range interactions, due to the wide range of particle sizes and morphologies observed. [...]
2
Content available remote

2-pyrrolidone - capped Mn3O4 nanocrystals

100%
EN
Water-soluble Mn3O4 nanocrystals have been prepared through thermal decomposition in a high temperature boiling solvent, 2-pyrrolidone. The final product was characterized with XRD, SEM, TEM, FTIR and Zeta Potential measurements. Average crystallite size was calculated as ∼15 nm using XRD peak broadening. TEM analysis revealed spherical nanoparticles with an average diameter of 14±0.4 nm. FTIR analysis indicated that 2-pyrrolidone coordinates with the Mn3O4 nanocrystals only via O from the carbonyl group, thus confining their growth and protecting their surfaces from interaction with neighboring particles. [...]
EN
In this study, we report on a new method for the synthesis of ZnS quantum dots (QDs). The synthesis was carried out at low temperature by a chemical reaction between zinc ions and freshly reduced sulfide ions in ethanol as reaction medium. Zinc chloride and elemental sulfur were used as zinc and sulfur sources, respectively and hydrazine hydrate was used as a strong reducing agent to convert elemental sulfur (S8) into highly reactive sulfide ions (S2−) which react spontaneously with zinc ions. This facile, less toxic, inexpensive route has a high yield for the synthesis of high quality metal sulfide QDs. Transmission electron microscopy (TEM) image analysis and selected area electron diffraction (SAED) reveal that ZnS QDs are less than 3 nm in diameter and are of cubic crystalline phase. The UV-Vis absorption spectrum shows an absorption peak at 253 nm corresponding to a band gap of 4.9 eV, which is high when compared to the bulk value of 3.68 eV revealing strong quantum confinement. PL emission transitions are observed at 314 nm and 439 nm and related to point defects in ZnS QDs.
EN
A series of Ni doped cobalt ferrite compounds with the formula Niχ Co1−χ Fe2O4 where x=0, 0.2, 0.4, 0.6, 0.8, and 1.0 were prepared using a hydrothermal method and subsequently sintered/annealed at 600 °C for 3 h. The influence of the Ni content on the lattice parameter, a, stretching vibration and the magnetization of specimens were subsequently studied. XRD and FTIR were used to investigate structure and composition variations. All samples were found to have a cubic spinel structure. SEM was used to study morphological variations. The results indicate that the average particle sizes are between 30–35 nm with a narrow size distribution along with nanocrystals forming of regular octahedrons. A decrease in the peak to peak line width and increase in resonance field with increasing Ni content were observed from ESR measurements. Based on ESR results, a core-shell type of formation was proposed where the core is made up of undoped CoFe2O4 and the shell is Ni2+ doped CoFe2O4. [...]
EN
We report on the synthesis of Mn3O4 nanoparticles (NPs) using a novel sonochemical method without requiring any pH adjustment. Synthesized material was identified as tetragonal hausmannite crystal structure model of Mn3O4 from XRD analysis. Crystallite size was estimated from x-ray line profile fitting to be 17±5 nm. FTIR analysis revealed stretching vibrations of metal ions in tetrahedral and octahedral coordination confirming the crystal structure. TEM analysis revealed a dominantly cubic morphology of NPs with an average size of ∼20 nm. Magnetic evaluation revealed a blocking temperature, T B of 40 K above which the material behaves paramagnetic. Asymmetric coercive field is attributed to the interaction between ferromagnetic Mn3O4 and antiferromagnetic Mn oxide at the surface of nanoparticles. [...]
EN
A series of Ni-doped cobalt ferrites NixCo1−xFe2O4 (x = 0.0, 0.4, 0.6, 0.8, and 1.0) were prepared using microwave-induced combustion. Nickel, cobalt, and ferric nitrates were used as starting materials and glycine as fuel. The influence of Ni content on the lattice parameter, stretching vibrations, and magnetization was studied. XRD, FTIR, and SEM were used for structure, composition, and morphology investigation. A porous network structure was observed with average particle size 60–67 nm. All samples had a cubic spinel structure. The unit cell parameter “a” decreases linearly with nickel concentration due to the smaller ionic radius of nickel. Magnetization measurements showed that coercivity decreased as Ni content increased; it increased with decreasing temperature. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.