Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2011
|
vol. 9
|
issue 2
562-569
EN
In this work we study the influence of plasmon excitations on the excitation dynamics within a protein complex embedding two chlorophyll molecules coupled to a gold nanosphere. Small separation between the chlorophylls and metallic nanoparticle allows us to simplify the calculations of the Förster energy transfer rate and non-radiative processes by replacing a spherical nanoparticle with a metallic surface. Our results show modifications of all relevant processes and the energy transfer pathways within the system as well as the radiative processes. Plasmon induced changes result in strong qualitative effects of the fluorescence of the studied light-harvesting complex.
EN
We report on continuous-wave and time-resolved fluorescence spectroscopy studies of CdTe water-soluble nanocrystals at room temperature. For nanocrystals spread directly on the substrate we observe large variation both in fluorescence maximum energy and fluorescence lifetime. We attribute this to the influence of the surface of the nanocrystals on the stability of excitations in the nanocrystals. As the fluorescence lifetime of the nanocrystals is monitored, we find it increases with time from 6 to 18 ns and then saturates. Placing the nanocrystals in a polymer matrix remarkably improves the photostability and all the above-mentioned effects are diminished. Upon mixing the nanocrystals with gold spherical nanoparticles we observe a decrease of the fluorescence intensity due to efficient energy transfer to the nanoparticles.
EN
We developed a fluorescence confocal microscope equipped with a hemispherical solid immersion lens (SIL) and apply it to study the optical properties of light-harvesting complexes. We demonstrate that the collection efficiency of the SIL-equipped microscope is significantly improved, as is the spatial resolution, which reaches 600 nm. This experimental setup is suitable for detailed studies of physical phenomena in hybrid nanostructures. In particular, we compare the results of fluorescence intensity measurements for a light-harvesting peridinin-chlorophyll-protein (PCP) complex with and without the SIL.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.