Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Ornithine (OTC) deficiency is an X-linked disorder of the urea cycle inherited by a partially dominant trait. We studied one boy with a positive family history of sudden infant death syndrome (SIDS) and four girls with suspected OTC deficiency basing on pedigree analysis, spontaneous episodes of hyperammonemia and orotic aciduria, and on results of the allopurinol loading test. Four different point mutations, N198K in exon 6, A209V and E326K in exon 9, and IVS nt-2 aRg in splice acceptor site in intron 7 were identified in the OTC gene. In addition, one common polymorphism in exon 8 (Q270R) with normal OTC activity was observed. All the mutations were detected in heterozygous girls and, except one, in the patients' asymptomatic mothers. In the latter single case the mutation had occurred de novo. All of the affected patients developed a positive allopurinol test. Four affected but asymptomatic women (mothers and a sister of the patients) revealed normal or only slightly increased orotic aciduria following allopurinol ingestion. Our observation supports the probability of undefined or false negative allopurinol test results reported previously for heterozygous females.
EN
Natural history of the disease in 4 unrelated Polish children with homozygous familial hypercholesterolemia (FH) is described. Their phenotypic homozygosity was established by identification of known LDLR gene mutations on both alleles, respectively: p.G592E & p.G592E in Patient 1; p.G592E & p.C667Y in Patient 2; p.S177L & p.R350X in Patient 3; and p.G592E & deletion in the promoter region, exons 1 and 2 in Patient 4. Heterozygosity of the mutations was revealed in all patients' mothers and fathers (obligatory heterozygotes) and in 1 out of 4 siblings studied. FH was diagnosed at the age of 4 months to 9 years by cholesterol screening among family members of patients with early cardiovascular disease episodes. At the time of FH detection, the children were asymptomatic. Only in 2, some skin eruptions were found. Antihyperlipidemic therapy was started, including a lipid-lowering diet, cholestyramine, and HMG-CoA inhibitors if necessary. No cardiovascular symptoms appeared during the observation up to the age of 18, 20, 19, and 17 years, respectively. An increase in external carotid artery diameter was found in a patient at the age of 9 years, and LDL-apheresis was introduced in his therapy. We conclude that the analysis of LDLR gene mutations in the studied FH children made it possible to identify 4 presymptomatic FH homozygotes and to introduce early appropriate treatment. Multicenter analysis of such persons would finally determine if the early lipid-lowering procedures can significantly reduce the risk of premature cardiovascular disease in homozygous FH.
EN
We present twenty-nine PHEX gene mutations extending our previous work, giving it to a total of 37 different mutations identified in Polish patients with familial or sporadic X-linked hypophosphatemia. Deletions, insertions and nucleotide substitutions leading to frameshift (27%), stop codon (29%), splice site (24%), and missense mutations (20%) were found. The mutations are distributed along the gene, exons 3, 4, 11, 12, 14, 15, 17, 20 and 22 are regions with the most frequent mutation events. Four mutations, P534L, G579R, R549X and IVS15+1nt, recurred in three, four, two and three unrelated patients, respectively. They have also been detected in affected persons from other countries. Twenty-eight mutations are specific for Polish population and almost all of them are unique. Most of the identified mutations are expected to result in major changes in protein structure and/or function.
EN
Autosomal dominant hypercholesterolemia (ADH) is caused by mutations in the genes coding for the low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9). In this study, a molecular analysis of LDLR and APOB was performed in a group of 378 unrelated ADH patients, to explore the mutation spectrum that causes hypercholesterolemia in Poland. All patients were clinically diagnosed with ADH according to a uniform protocol and internationally accepted WHO criteria. Mutational analysis included all exons, exon-intron boundaries and the promoter sequence of the LDLR, and a fragment of exon 26 of APOB. Additionally, the MLPA technique was applied to detect rearrangements within LDLR. In total, 100 sequence variations were identified in 234 (62%) patients. Within LDLR, 40 novel and 59 previously described sequence variations were detected. Of the 99 LDLR sequence variations, 71 may be pathogenic mutations. The most frequent LDLR alteration was a point mutation p.G592E detected in 38 (10%) patients, followed by duplication of exons 4?8 found in 16 individuals (4.2%). Twenty-five cases (6.6%) demonstrated the p.R3527Q mutation of APOB. Our findings imply that major rearrangements of the LDLR gene as well as 2 point mutations (p.G592E in LDLR and p.R3527Q in APOB) are frequent causes of ADH in Poland. However, the heterogeneity of LDLR mutations detected in the studied group confirms the requirement for complex molecular studies of Polish ADH patients.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.