Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2012
|
vol. 10
|
issue 5
1633-1639
EN
The chloro functionality of allyldichlorosilane (HSiCl2(C3H5)) and allyldichloromethylsilane (MeSiCl2(C3H5)) were replaced by alkynyl groups and new compounds, allyldialkynylsilane 1 and allyldialkynylmethylsilane 2, were obtained. These silanes, which served as starting materials for the onward reactions, were purified by fractional distillation. They were further subjected to hydroboration with 9-BBN (9-borabicyclo[3.3.1]nonane) and were converted into 1-silacyclohex-2-ene derivatives 5 and 6. The competition between C≡C and C=C in the reaction was studied. The hydroborating reagent 9-BBN was expected to prefer terminal C=C bonds and to leave C≡C bond untouched. This hypothesis of preferable hydroboration was experimentally proved, and hence, 1-silacyclohex-2-ene derivatives were obtained in reasonably pure form. The reaction of allyldialkynylsilane 2 with one equivalent of 9-BBN affords 1-silacyclohex-2-ene bearing Si-C≡C-function, ready to be hydroborated further with one equivalent of 9-BBN. The obtained compound bears two C-B bonds, which are attractive synthones for further transformations. This study aims to highlight the chemistry of C-B and Si-H functional groups. All new compounds obtained were colorless air and moisture sensitive oils, and they were studied by multinuclear magnetic resonance spectroscopy (1H, 13C, 11B, 29Si NMR) in solution. [...]
Open Chemistry
|
2011
|
vol. 9
|
issue 1
126-132
EN
Hydroboration of trialkyn-1-yl(organo)silanes with one equivalent and two equivalents of 9-borabicyclo[3.3.1]nonane, 9-BBN afford dialkyn-1-ylsilanes and alkyn-1-ylsilanes, respectively. The alkyn-1-ylsilane derivatives are stable at room temperature and can be store under dry argon for prolong period of time. These compounds are attractive materials for further rearrangements to afford novel 1-silacyclobutene derivatives bearing Si-alkenyl or Si-alkynyl functionalities. The hydroboration reaction is well controlled by the Si-R1 function, i.e., the starting silanes with R1 = Ph selectively afford hydroboration of one Si-C≡C bond with one equivalent of 9-BBN, leaving the other two functionalities untouched. Under mild reaction conditions (25°C), the starting silanes with R1 = Me lead to mixture containing dialkyn-1-ylsilane, alkyn-1-ylsilane and their respective 1-silacyclobutene derivatives. All new compounds are sensitive towards air and moisture and were studied by multinuclear magnetic resonance spectroscopy (1H, 13C, 11B, 29Si NMR) in solution.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.