Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Nowadays, scientists may learn a lot about the organisms studied just by analyzing their genetic material. This requires the development of methods of reading genomes with high accuracy. It has become clear that the knowledge of the changes occuring within a viral genome is indispensable for effective fighting of the pathogen. A good example is SARS-CoV, which was a cause of death of many people and frightened the entire world with its fast and hard to prevent propagation. Rapid development of sequencing methods, like shotgun sequencing or sequencing by hybridization (SBH), gives scientists a good tool for reading genomes. However, since sequencing methods can read fragments of up to 1000 bp only, methods for sequence assembling are required in order to read whole genomes. In this paper a new assembling method, based on graph theoretical approach, is presented. The method was tested on SARS-CoV and the results were compared to the outcome of other widely known methods.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.