Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Magnetic Properties of Hexagonal Graphene Nanomeshes

100%
EN
Graphene nanomeshes are the nanostructures consisting of graphene flake with a regular pattern of antidots (holes) punched through it. Thanks to the energy gaps opening in electronic spectrum, nanomesh-based transistors offer improved I_{on}/I_{off} ratio of the collector current while supporting up to 100 larger driving currents than nanoribbon-based devices. In this paper the electronic and magnetic structure of graphene nanomeshes with hexagonally shaped antidots was studied. It has been found that the internal zigzag edges support magnetic moments and that lowest energy magnetic configuration is antiferromagnetic. The density of states calculated for ground state configuration exhibit the energy gap which can be substantially reduced upon switching (e.g. by external magnetic field) to ferromagnetic configuration. Based on this we predict that the structure will exhibit magnetoresistive effect, which makes graphene nanomeshes of this kind relevant for spintronic applications.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.