Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Electrocatalytic oxidation of sulfide ion on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNTs) and a copper (II) complex was investigated. The Cu(II) complex was used due to the reversibility of the Cu(II)/Cu(III) redox couple. The MWCNTs are evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on Cu(II) complex adsorbed on MWCNTs immobilized on the surface of GCE. The modified GCE was applied to the selective amperometric detection of sulfide at a potential of 0.47 V (vs. Ag/AgCl) at pH 8.0. The calibration graph was linear in the concentration range of 5 µM–400 µM; while the limit of detection was 1.2 µM, the sensitivity was 34 nA µM−1. The interference effects of SO3 2−, SO4 2−, S2O3 2−, S4O6 2−, Cysteine, and Cystein were negligible at the concentration ratios more than 40 times. The modified electrode is more stable with time and more easily restorable than unmodified electrode surface. Also, modified electrode permits detection of sulfide ion by its oxidation at lower anodic potentials.
EN
A simple, sensitive and selective flotation method is described for the preconcentration and atomic absorption spectrometric determination of zinc ion in water and blood samples. At a solution pH of 5.2, 4-(2-pyridylazo-resorcinol) and Triton X-114 were used as hydrophobic ligand and non-ionic surfactant, respectively. The chemical variables affecting the preconcentration process were optimized. Under the optimized experimental conditions, the selective preconcentration and determination of as low zinc concentration as 6.5 µg L−1 can be made. The proposed method was successfully applied to the preconcentration and low-level determination of zinc in different water and blood serum samples. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.