Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Pharmaceutical compounds have been detected in the environment and potentially arise from the discharge of excreted and improperly disposed medication from sewage treatment facilities. In order to minimize environmental exposure of pharmaceutical residues, a potential technique to remove pharmaceuticals from water is the use of an advanced oxidation process (AOP) involving titanium dioxide (TiO2) photocatalysis. To evaluate the extent UV/TiO2 processes have been studied for pharmaceutical degradation, a literature search using the keywords ‘titanium dioxide’, ‘photocatalysis’, ‘advanced oxidation processes’, ‘pharmaceuticals’ and ‘degradation’ were used in the ISI Web of Knowledge TM, Scopus TM and ScienceDirect TM databases up to and including articles published on 23 November 2011. The degradation rates of pharmaceuticals under UV/TiO2 treatment were dependent on type and amount of TiO2 loading, pharmaceutical concentration, the presence of electron acceptors and pH. Complete mineralization under particular experimental conditions were reported for some pharmaceuticals; however, some experiments reported evolution of toxic intermediates during the photocatalytic process. It is concluded that the UV/TiO2 system is potentially a feasible wastewater treatment process, but careful consideration of the treatment time, the loading and the type of TiO2 (doped vs. undoped) used for a particular pharmaceutical is necessary for a successful application (198 words). [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.