Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The (110) oriented V/Fe multilayers were prepared at room temperature using UHV magnetron sputtering. As a substrate we have used Si(100) wafers with an oxidised surface. The surface chemical composition and the cleanness of all layers was checked in situ, immediately after deposition, transferring the samples to an UHV analysis chamber equipped with X-ray photoelectron spectroscopy. The structure of the multilayers has been studied ex situ by low- and high-angle X-ray diffraction. The modulation wavelength was determined from the spacing between satellite peaks in the X-ray diffraction patterns. Results were consistent with the values obtained from total thickness divided by the number of repetitions. Growth of the Fe (V) on 1.6 nm V (Fe) underlayer was studied by succesive deposition and X-ray photoelectron spectroscopy measurements starting from 0.2 nm of Fe (V) layer, respectively. From the exponential variation of the X-ray photoelectron spectroscopy Fe 2p and V 2p integral intensities with increasing layer thickness we conclude that the Fe and V sublayers grow homogeneously in the planar mode.
2
Content available remote

Oxidation Kinetics of Thin and Ultrathin Fe Films

100%
EN
We have studied oxidation kinetics of Fe thin films under atmospheric conditions using the fact that metallic iron is a ferromagnet but ultrathin natural iron oxides are practically nonmagnetic at room temperature. As a consequence, oxidation is associated with a loss in ferromagnetism. Fe thin films were deposited onto 1.5 nm V thick buffer layer using UHV magnetron sputtering. As a substrate we have used Si(100) wafers with an oxidised surface. Results show that all samples with an initial Fe thickness greater than 6 nm oxidize practically instantaneously, whereby a constant amount of 2.5 nm of metal is transformed into oxides. For iron thickness lower than 6 nm the time constant for oxidation increases considerably reaching a value of 30 days for the initial Fe thickness equal to 4 nm.
3
100%
|
|
vol. 126
|
issue 6
1315-1317
EN
The d_{V}-V/0.6 nm-Fe multilayers with constant thickness sublayers were prepared onto naturally oxidised Si(100) substrate using UHV (5× 10^{-10} mbar) DC/RF magnetron sputtering. Results showed that the saturation field of the V/Fe multilayers oscillate with antiferromagnetic interlayer exchange coupling peaks near the V spacer thickness of about 1.3, 1.6, 2.05 nm. Furthermore, all the samples with vanadium layer thickness near local maxima of the antiferromagnetic coupling show zero remanence. The short period of the antiferromagnetic peak oscillations is due to indirect Ruderman-Kittel-Kasuya-Yosida (RKKY)-type coupling of the Fe layers across vanadium spacer. The absence of the antiferromagnetic peaks in the very strongly coupled region (below d_{V} ≈ 1 nm) could be explained by direct ferromagnetic exchange coupling of the Fe layers due to magnetic polarization of V atoms near V-Fe interface.
EN
LaNi_{5-x}Mₓ (M = Al, Co) alloy thin films were prepared onto oxidised Si(100) substrates in the temperature range of 285-700 K using UHV magnetron co-sputtering. The surface chemical composition and valence bands of all the alloy thin films were measured in situ, immediately after deposition, transferring the samples to an UHV analysis chamber equipped with X-ray photoelectron spectroscopy. Results showed that the shape of the valence bands measured for the polycrystalline samples is practically the same compared to those obtained theoretically from ab initio band structure calculations. On the other hand, the X-ray photoelectron spectroscopy valence bands of the nanocrystalline thin films (especially LaNi₄Co) are considerably broader compared to those measured for the polycrystalline samples. This is probably due to a strong deformation of the nanocrystals. Therefore, the different microstructure observed in polycrystalline and nanocrystalline alloy thin films leads to significant modifications of their electronic structure.
EN
In this contribution we study experimentally the electronic properties of nanocrystalline Fe-Ni-Ti alloy thin films using X-ray photoelectron spectroscopy. The structure of the samples has been studied by X-ray diffraction. Their bulk chemical compositions were measured using X-ray fluorescence method. The surface chemical composition and the cleanness of all samples were checked in situ, immediately after deposition, transferring the samples to an UHV analysis chamber equipped with X-ray photoelectron spectroscopy. X-ray diffraction studies revealed the formation of nanocrystalline Fe-Ni-Ti alloy thin films at a substrate temperature of about 293 K. In situ X-ray photoelectron spectroscopy studies showed that the valence bands of nanocrystalline samples are broader compared to those measured for the polycrystalline bulk alloys. Such modifications of the valence bands of the nanocrystalline alloy thin films could influence on their hydrogenation properties.
EN
In this contribution we study valence bands of in-situ prepared nanocrystalline NiTi and Ni₃Ti alloy thin films using X-ray and ultraviolet photoelectron spectroscopy. Additionally, theoretical valence band of NiTi alloy was calculated by ab-initio methods. The structure and morphology of the samples were studied by X-ray diffraction and atomic force microscopy, respectively. Furthermore, hydrogen absorption and desorption kinetics at a pressure of about 1000 mbar were studied in Pd covered nanocrystalline NiTi alloy thin film using four-point resistivity measurements. Results showed that modifications of the valence bands of the Ni-Ti thin films due nanocrystalline structure can influence on the room temperature hydrogen absorption and desorption kinetics.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.