Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 9

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
Open Physics
|
2008
|
vol. 6
|
issue 1
158-170
EN
We carry out a systematic study of uncertainty measures that are generic to dynamical processes of varied origins, provided they induce suitable continuous probability distributions. The major technical tools are the information theory methods and inequalities satisfied by Fisher and Shannon information measures. We focus on the compatibility of these inequalities with the prescribed (deterministic, random or quantum) temporal behavior of pertinent probability densities.
EN
In this paper we present two simple mathematical models to describe human behavior in reaction to deadlines. When a real commitment (e.g. money) is involved, as in the case of a payment deadline, the expected reaction is to postpone it as close as possible to the deadline to minimize the risk of loosing the value. For low risk commitments this tendency is still present but expected to be looser. In order to test these predictions in a quantitative way, we performed data analysis for the total number of registrations and fee payments vs. time for the recent scientific conference “Statphys 23”, comparing it with the data of another conference in order to recover universal features. Two related models respectively for registrations (weak engagement) and fee payment (strong engagement) are then introduced which are able to explain in a simple way both behaviors, and which show an excellent agreement with real data.
3
100%
EN
In this paper, we investigate the statistical and scaling properties of the California earthquakes’ inter-events over a period of the recent 40 years. To detect long-term correlations behavior, we apply detrended fluctuation analysis (DFA), which can systematically detect and overcome nonstationarities in the data set at all time scales. We calculate for various earthquakes with magnitudes larger than a given M. The results indicate that the Hurst exponent decreases with increasing M; characterized by a Hurst exponent, which is given by, H = 0:34 + 1:53/M, indicating that for events with very large magnitudes M, the Hurst exponent decreases to 0:50, which is for independent events.
4
Content available remote

Brownian pump with an unbiased external force

100%
EN
We investigate Brownian pump transport in the presence of an unbiased external force. The pumping system is embedded in a finite region bounded by two particle reservoirs. In the adiabatic limit, we obtain the analytical expressions of the current and the concentration ratio. We find that Brownian particles can be pumped through an asymmetric potential from a particle reservoir at low concentration to one at the same or higher concentration in the presence of an unbiased external force.
5
Content available remote

Superstatistics and renewal critical events

84%
EN
An approach to intermittent systems based on renewal processes is reviewed. The Waiting Times (WTs) between events are the main variables of interest in intermittent systems. A crucial role is played by the class of critical events, characterized by Non-Poisson statistics and non-exponential WT distribution. A particular important case is given by WT distributions with power tail. Critical events play a crucial role in the behavior of a property known as Renewal Aging. Focusing on the role of critical events, the relation between superstatistics and non-homogeneous Poisson processes is discussed, and the role of Renewal Aging is illustrated by comparing a Non-Poisson model with a Poisson one, both of them modulated by a periodic forcing. It is shown that the analysis of Renewal Aging is sensitive to the presence of critical events and that this property can be exploited to detect Non-Poisson statistics in a time series. As a consequence, it is claimed that, apart from the characterization of superstatistical features such as the distribution of the intensive parameter or the separation of the time scales, the Renewal Aging property can give some effort to better determine the role of Non-Poisson critical events in intermittent systems.
Open Physics
|
2009
|
vol. 7
|
issue 3
534-540
EN
We study the effects of time delay on the normalized correlation function C(s) and the associated relaxation time T c for a bistable system with correlations between multiplicative and additive white noises under the condition of small time delay. Using the projection operator method, the expressions of T c and C(s) are obtained. Based on numerical computations, it is found that the delay time τ slows down the rate of fluctuation decay of dynamical variable for the presence of positive feedback intensity (∈ > 0), while speeds up the rate of fluctuation decay of dynamical variable for the presence of negative feedback intensity (∈ < 0). The effects of the delay time τ on the T c and C(s) are entirely opposite for ∈ 〉 0 and ∈ < 0.
7
Content available remote

Lévy flights and Lévy-Schrödinger semigroups

84%
Open Physics
|
2010
|
vol. 8
|
issue 5
699-708
EN
We analyze two different confining mechanisms for Lévy flights in the presence of external potentials. One of them is due to a conservative force in the corresponding Langevin equation. Another is implemented by Lévy-Schrödinger semigroups which induce so-called topological Lévy processes (Lévy flights with locally modified jump rates in the master equation). Given a stationary probability function (pdf) associated with the Langevin-based fractional Fokker-Planck equation, we demonstrate that generically there exists a topological Lévy process with the same invariant pdf and in reverse.
Open Physics
|
2008
|
vol. 6
|
issue 3
737-753
EN
In a first stage, the paper deals with the derivation and the solution of the equation of the probability density function of a stochastic system driven simultaneously by a fractional Gaussian white noise and a fractional Poissonian white noise both of the same order. The key is the Taylor’s series of fractional order f(x + h) = E α(hαDx α)f(x) where E α() denotes the Mittag-Leffler function, and D x α is the so-called modified Riemann-Liouville fractional derivative which removes the effects of the non-zero initial value of the function under consideration. The corresponding fractional linear partial differential equation is solved by using a suitable extension of the Lagrange’s technique involving an auxiliary set of fractional differential equations. As an example, one considers a half-oscillator of fractional order driven by a fractional Poissonian noise.
Open Physics
|
2009
|
vol. 7
|
issue 3
607-613
EN
In this paper the driven transport of linear polymers through a nanopore is presented. Biopolymer physical behavior in an external electric field is modeled and its motion is simulated using the Langevin impulse integrator method. Within fairly large limits, the polymer translocation time is inversely proportional with the electric field intensity and directly proportional with the polymer chain length.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.