Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 13

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The article presents the experimental results on electric conductivity investigations of gallium arsenide, exposed to polyenergy implantations with H^{+} ions, depending on alternating current frequency (50 Hz ÷ 5 MHz), testing temperature (liquid nitrogen temperature ÷ 373 K) and the temperature of 15 min isochronous annealing (293 ÷ 663 K). It has been found that the obtained dependences σ (T_{p}, f) result from a jump mechanism of electric charge transfer between the radiation defects that form in the process of ion implantation. Correlations between annealing of various types of radiation defects and conductivity characteristics σ (T_{p}, f) have also been discussed.
EN
This paper presents the investigations of the electrical properties of the (CoFeZr)_{x}(PZT)_{1-x} nanocomposite with the metallic phase content x=43.8 at.%, which was produced by ion beam sputtering. Such preparation took place under an argon atmosphere with low oxygen content with its partial pressure P_{O₂} = 2×10¯³ Pa. The measurements were performed using alternating current within the frequency range of 50 Hz-10⁵ Hz for measuring temperatures ranging from 238 K to 328 K. The (CoFeZr)_{43.8}(PZT)_{56.2} nanocomposite sample subjected to a 15 min annealing process in air at the temperature Tₐ=423 K demonstrates a phase angle of -90° ≤ θ ≤ 0° in the frequency range 50 Hz-10⁵ Hz. It corresponds to the capacitive type of conduction. In the frequency range 10⁴-10⁵ Hz sharp minima in selected conductivity vs. frequency characteristics occur, which corresponds to a current resonance phenomenon in RLC circuits. In case of a sample annealed at Tₐ=498 K the inductive type of conduction with 0° ≤ θ ≤ +90° occurs in a high frequency area. At the frequency f_{r} characterized by the phase angle θ = 0°, the capacity value reaches its local minimum. It indicates a voltage resonance phenomenon in conventional RLC circuits. The θ = +90° crossing in the frequency dependence of phase angle corresponds to the current resonance phenomenon, which is represented by a strong local minimum in the conductivity vs. frequency characteristics.
EN
The main goal of this work is to establish the influence of annealing on the properties of Cz-Si wafers previously subjected to the hydrogen ion-beam treatment at 25 or 300-350°C. It is demonstrated by the conducted study that, despite similarity in the effects of the hydrogen ion-beam treatment at different temperatures on some electrical properties of the wafers (photovoltage spectra, thermoelectromotive force sign), thermal stability of changes in these properties due to the hydrogen ion-beam treatment depends on the hydrogenation temperature.
EN
The general goal of this work is to investigate the defects formed on the surface of the Cz-Si wafers subjected to helium implantation, vacuum annealing and nitrogen plasma treatment. The performed scanning electron microscopy study has shown that in the general case two types of surface defects can be formed: cone-shaped inclusions with the base diameter of 0.2-2 μm and the ratio of diameter to height of approximately 1:1, as well as crystallographically oriented line defects with the length equal to 0.2-2 μm. The concentration of these defects depends on the conditions of implantation and plasma treatment.
EN
This paper presents the investigations of electrical properties and effect of annealing on conductivity of (CoFeZr)_{x}(CaF_2)_{100-x} nanocomposites produced by ion-beam sputtering in the Ar and O_2 ambient. Investigations into conductivity of (CoFeZr)_{x}(CaF_2)_{100-x} nanocomposites depending on the measuring temperature and the annealing temperature have been performed. The application of a combined argon-oxygen beam brings about lowering of the potential barrier on the surface of nanoparticles. In the course of annealing the additional oxidation occurs. First it proceeds on the surface and then all through the metallic-phase particles.
EN
We report the investigation of a real part of the admittance σ of granular nanocomposites (Fe_{0.45}Co_{0.45}Zr_{0.10})_{x}(Al_2O_3)_{1 - x} with 0.30 < x < 0.70 in the dielectric (hopping) regime. An analysis of the σ(T, f, x) dependences in the as-deposited and annealed films over the temperature 77 K < T < 300 K and frequency 50 < f < 10^6 Hz ranges displayed the predominance of an activation (hopping) conductance mechanism with dσ/ dT > 0 for the samples below the percolation threshold x_{C} ≈ 0.76 ± 0.05. Based on the earlier models for hopping AC conductance, computer simulation of the frequency coefficient α_{f} of hopping conductance depending on the probability of jump p, frequency f, and also on the shape of σ(f) curve was performed. The experimental and simulation results revealed a good agreement.
EN
The temperature and frequency dependences of the admittance real part σ (T, f) in granular (Fe_{45}Co_{45}Zr_{10})_{x}(Al_2O_3)_{100 - x} nanocomposite films around the percolation threshold x_{C} were investigated. The behaviour of σ (T, f) vs. the temperature and frequency over the ranges 77-300 K and 50 Hz-1 MHz, respectively, displays the predominance of an activation (hopping) conductance mechanism for the samples below the percolation threshold x_{C} and of a metallic one beyond the x_{C} determined as 54 ± 2 at.%. The mean hopping range d for the nanoparticles diameter D was estimated at different metallic phase content x.
EN
This paper investigates the inductive contribution to AC conductance in the granular nanocomposites (Fe_{0.45}Co_{0.45}Zr_{0.10})_{x}(Al_2O_3)_{1-x}. The initial nanocomposites studied were manufactured in Ar+O_2 atmosphere by ion-beam sputtering of the target containing Fe_{0.45}Co_{0.45}Zr_{0.10} and alumina stripes and then subjected to the annealing procedure in air over the temperature range 373 K < T_{a} < 873 K. These samples, before and after annealing, were studied using the temperature 77 K < T_{p} < 300 K and frequency 50 Hz < f < 1 MHz dependences of a real part of the admittance σ(T, f). Analysis of the observed σ (f, T_{p}) dependences for x < 0.5 demonstrated that in the studied samples the equivalent circuits with the capacitive and noncoil-like inductive contributions can be accomplished. Just in this case, the capacitive properties of RLC circuit with the phase angle - 90° ≤ θ_{L} < 0° are exhibited at low frequencies and the inductive properties with 0° ≤ θ_{H} < 90° become apparent at high frequencies. A value of the critical frequency f_{R}, where θ_{H} changes sign, depends on the metallic phase concentration x, measuring temperature T_{p}, and annealing temperature T_{a}.
EN
Diodes manufactured on the wafers of single-crystalline silicon uniformly doped with phosphorus are studied. The wafer resistivity was 90 Ω cm. Xenon ions were implanted into the diodes from the side of the p^{+}-region (implantation energy 170 MeV, fluence Φp from 5 × 10^7 to 10^9 cm^{-2}). It is shown that the formation of a continuous irradiation damaged layer with the thickness of the order of magnitude of the average projective range creates prerequisites for the negative differential resistance in the current-voltage characteristics of the irradiated diodes.
EN
The diodes manufactured on the wafers of single-crystalline silicon uniformly doped with phosphorus are studied. The wafer resistivity was 90 Ω cm. Krypton ions are implanted to the side of the p^{+}-region of diodes (energy 107 MeV, fluence Φp from 5 × 10^7 to 4 × 10^9 cm^{-2}). It is shown that recovery charge Q_{rr} is inversely proportional to the square root of the irradiation fluence value Φp. When the fluence increases, the part of the recovery charge Q_{rrA}, due to the high reverse conductance phase, decreases faster than the value Q_{rr}.
EN
The paper is focused on the results of Xe ions irradiation of nanocomposite FeCoZr-CaF₂ films synthesized in the oxygen-containing atmosphere. Combined influence of nanoparticles partial oxidation and ion irradiation with different fluences on the crystalline structure, phase composition and magnetic anisotropy is analysed by X-ray diffraction, the Mössbauer spectroscopy and vibrating sample magnetometry. The origin of the detected progressive enhancement of perpendicular magnetic anisotropy as the result of films oxidation and irradiation is discussed in the context of formation of nanoparticles oxide shells and ion tracks along the films normal.
EN
Silicon diodes irradiated with helium ions with energies of 4.1, 6.8 and 8.9 MeV are studied. It is shown that the mechanism determining the behaviour of frequency dependence of complex electric module and correspondingly the behavior of impedance of diodes irradiated with helium ions in the frequency region 3-200 kHz is a recharging of vacancy complexes localized in the space charge region.
EN
A study of magnetotransport in the n-Si/SiO_2/Ni nanostructures with granular Ni nanorods in SiO_2 pores was performed over the temperature range 2-300 K and at the magnetic fields induction up to 8 T. The n-Si/SiO_2/Ni Schottky nanostructures display the enhanced magnetoresistive effect at 25 K due to the impurity avalanche mechanism.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.