Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Two water soluble porphyrins: meso-tetra-4-N-methylpyridyl-porphyrin iodide (P1) and 5,10-di-(4-acetamidophenyl)-15,20-di-(4-N-methylpyridyl) porphyrin (P2) were synthesised and evaluated in respect to their photochemical and photophysical properties as well as biological activity. Cytotoxic and phototoxic effects were evaluated in human malignant melanoma Me45 line using clonogenic assay, cytological study of micronuclei, apoptosis and necrosis frequency and inhibition of growth of megacolonies. Both porphyrins were characterised by high UV and low visible light absorptions. Dark toxicity measured on the basis of the clonogenic assay and inhibition of megacolony growth area indicated that P1 was non-toxic at concentrations up to 50 μg/ml (42.14 μM) and P2 at concentrations up to 20 μg/ml (16.86 μM). The photodynamic effect induced by red light above 630 nm indicated that both porphyrins were able to inhibit growth of melanoma megacolonies at non-toxic concentrations. Cytologic examination showed that the predominant mode of cell death was necrosis.
EN
We report the synthesis, photochemical and photophysical properties and preliminary studies on biological effect of a new tritolylporphyrin dimer (T-D). Absorption and emission properties of T-D suggest its possible use in photodynamic therapy. T-D is capable of singlet oxygen production with 0.8 quantum yield. It also has a high photostability. The photodynamic properties of the dimer were examined following the growth of SKMEL 188 (human melanoma) cells irradiated with red light (cut off <630 nm). The surviving fraction of the cells decreased about 3-fold (vs. non-irradiated cells) for an 81 J/cm2 dose. Our results suggest that tritolylporphyrine dimer T-D may be an interesting hydrophobic sensitizer for photodynamic therapy.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.