Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Qualification of the most statistically "sensitive" diffusion parameters using Magnetic Resonance (MR) Diffusion Tensor Imaging (DTI) of the control and injured spinal cord of a rat in vivo and in vitro after the trauma is reported. Injury was induced in TH12/TH13 level by a controlled "weight-drop". In vitro experiments were performed in a home-built MR microscope, with a 6.4 T magnet, in vivo samples were measured in a 9.4 T/21 horizontal magnet The aim of this work was to find the most effective diffusion parameters which are useful in the statistically significant detection of spinal cord tissue damage. Apparent diffusion tensor (ADT) weighted data measured in vivo and in vitro on control and injured rat spinal cord (RSC) in the transverse planes and analysis of the diffusion anisotropy as a function of many parameters, which allows statisticall expose of the existence of the damage are reported.
EN
Magnetic Resonance Diffusion Tensor Imaging (DTI) of the control and traumatic injured spinal cord of a rat in vitro is reported. Experiments were performed on excised spinal cords from 10 Wistar rats, using a home-built 6.4 T MR microscope. MRI and histopathological results were compared. Presented results show that DTI of the spinal cord, perfused with formalin 10 minutes after the injury, can detect changes in water diffusion in white matter (WM) and in gray matter (GM), in areas extending well beyond the region of direct impact. Histology of neurons of the GM shows changes that can be attributed to ischemia. This is in agreement with the observed decrease of diffusion in the injured regions, which may be attributed to the cytotoxic edema due to ischemia. However, the diffusion changes in highly anisotropic WM seem to be caused by a direct action of mechanical force of impact, which significantly distorts the nerve fibers.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.