Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 11

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Acta Physica Polonica A
|
2013
|
vol. 123
|
issue 1
53-57
EN
The chaotic behavior of underwater ray system is studied. Because the parabolic equation is an approximation under small ray angle with respect to horizontal, the elliptic equation system is considered here besides the parabolic system. We pay main attention to the interval of large ray angle. A comparison between these two forms of system is performed. We find that when the ray angle is not large (θ_0=0° - 18°), the two systems show the same qualitative behavior. However, in interval of large ray angle (θ_0 ≥ 19°), if the perturbation strength is not very small, e.g. δ=0.05, the parabolic system shows regular motion, while the elliptic system exhibits chaotic behavior in most of this interval except a few quasiperiodic islands studded in the chaotic ocean. Dynamical behaviors of the two systems show surprising difference.
EN
Two-dimensional images of the artificial magnetic field created by permanent magnets were obtained by means of the Faraday magnetic rotation effect. This provides a convenient and effective means to observe and measure macro-scale magnetic field, as well as lays a base for three-dimensional optical imaging of magnetic field. The magnetic field imaging here can also be considered as a key part of the magnetic rotation geomagnetic field imaging method which we put forward before, and will provide experimental support for this method.
EN
The output far-field intensity distributions of off-axial cylindrical hybrid resonator with different mirror misalignments are simulated by coordinate transformation fast Fourier-transform algorithm. The simulations showed that the mirror misalignments influence is different in anticlockwise and clockwise tilt direction. According to the calculation results, the output beam quality of off-axial unstable resonator is analyzed, from the aspects of M^2 value and power in the bucket curves. Furthermore, the analysis brings out an interesting contradiction that the beam quality changing evaluated by M^2 value is different from that by power in the bucket curves when the mirror misalignments occurred in anticlockwise direction. It demonstrated that the beam quality evaluation of off-axial unstable resonator should not be one-sided.
4
Content available remote

An Experimental Study on Unipolar Induction

81%
EN
Unipolar induction phenomenon is a special kind of electromagnetic induction. There are two quite opposite theoretical explanations for this phenomenon, i.e., the N theory and the M theory. The research of unipolar induction has made significant progress, but there is no final conclusion by now. In this paper, an experiment of inversely rotating double Faraday disks and double magnets are designed, and the unipolar induction phenomenon is verified by means of theoretical calculation and experiment. Comparing and analyzing the theoretical calculation and experiment results, our experimental results support the N theory, that is to say, our experiment shows that the magnetic field does not rotate when the magnet rotates.
EN
Exosomes are small membrane vesicles derived from late endosome. They are about 30?100 nm in diameter. The secretion of exosomes is a process in which multivesicular bodies fuse with the cell membrane, and all cells that contain multivesicular endocytic compartments could theoretically secrete exosomes. The surprising biological functions of exosomes are only slowly being unveiled, but it is already clear that they serve to remove obsolete membrane proteins and act as messages of inter-cellular communication. Exosomes derived from tumor or antigen-presenting cells have been extensively investigated. They are released into the extracellular environment and fuse with the membranes of neighboring cells, delivering membrane and cytoplasmic proteins from one cell to another. Exosomes carry immunorelevant structures which play important roles in immune response, such as MHC molecules, costimulatory molecules, heat shock proteins, and naive tumor antigens. Therefore they have been suggested as potential vaccines. Consequently, exosomes have shown considerable anti-tumor effect in several studies and are in phase I clinical trials.
6
Content available remote

Defect Recovery in α-Fe e^{-}-irradiated at 300 K

71%
EN
Defect annealing recovery has been studied, by measuring positron lifetime spectra, in high-purity α-iron irradiated at 300 K with 3 MeV electrons to a fluency of 7 × 10^{19} cm^{-2}. Vacancy clusters containing 6-10 single vacancies were observed immediately after irradiation during which they were possibly forming (the so-called "irradiation annealing"). With increasing temperature, the agglomerates continually grow in size at the expense of their concentration, giving rise to the formation of microvoids (> 15 vacancies). Also present were other types of defects, probably immobile vacancies trapped by impurity (e.g. carbon) atoms and dislocation/loops generated presumably from collapse of voids during the relatively high dose irradiation and/or the annealing. The immobile vacancies eventually became movable at around 350 K, supplying the growing clusters and thus leading to a stabilization in their concentration till around 500 K. Between 500 and 700 K, microvoids gradually evaporated, but the dislocation-associated defects were able to survive annealing at temperatures as high as 700 K. The void size and concentration and their evolution have been evaluated on the basis of both the to date theoretical and experimental studies. The temperature dependence was also, observed of positron trapping into vacancy agglomerates of various sizes.
EN
QTL mapping for plant-height traits has not been hitherto reported in high-oil maize. A high-oil maize inbred 'GY220' was crossed with two dent maize inbreds ('8984' and '8622') to generate two connected F2:3 populations. Four plant-height traits were evaluated in 284 and 265 F2:3 families. Single-trait QTL mapping and multiple-trait joint QTL mapping was used to detect QTLs for the traits and the genetic relationship between plant height (PH) and two other plant-height traits. A total of 28 QTLs and 12 pairs of digenic interactions among detected QTLs for four traits were detected in the two F2:3 families. Only one marker was shared between the two populations. Joint analysis of PH with ear height (EH) and PH with top height (TH) detected 32 additional QTLs. Our results showed that QTL detection for PH was dependent on the genetic background of dent corn inbreds. Multiple-trait joint QTL analysis could increase the number of detected QTLs.
EN
Time-resolved photon counting technique was employed to study dynamics of photoluminescence from the ensemble and single CdSe/ZnS quantum dots with the alloyed core/shell interfaces. The ensemble data revealed enhanced effect of disorder-induced trap states for increasing emission energy, as implied from the changes in the distribution of total decay rates. The emission trajectories collected for single quantum dots showed familiar, two-state blinking pattern. It suggests that in a large-band-offset CdSe/ZnS system, the introduced alloying of the core-to-shell region cannot smooth enough the confinement potential in order to suppress nonradiative Auger recombination and blinking.
EN
Quasi-Josephson effect produced by a coherent vortex motion in the horizontal part of the laser-performedΠ-shaped channel of a YBa_2Cu_3O_{7-δ} superconducting bridge was investigated by means of electric transport measurements. We observed that in our structures, in a limited range of temperatures and bias currents, the vortices were confined in the channel only and moved coherently with the velocity of 3×10^4 m/s. The corresponding current-voltage characteristics of the bridge exhibited Josephson-like voltage steps with the amplitude dependent on temperature, but independent of the bias current.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.