Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
2
Content available remote

Cavity Enhanced Absorption Spectroscopy Sensor

100%
EN
The paper presents opportunities of cavity enhanced absorption spectroscopy technique application in nitrogen oxides (NO_{x}) detection. In this method the concentration of an absorbing gas is determined by measure of decay time of the light pulse trapped in an optical cavity. The measurements are not sensitive to fluctuation of both laser power and photodetector sensitivity. The cavity enhanced absorption spectroscopy technique is a modification of cavity ring down spectroscopy technique where the off-axis adjustment of the resonator is used. NO_{x} detection is carried out in the visible and infrared range. The signal is registered with a developed low noise photoreceiver. Features of the presented sensor show that it is possible to build a portable trace gases sensor. Its sensitivity could be comparable with chemical detectors. Such a system has several advantages: relatively low price, small size and weight, and detection possibility of other gases.
EN
The paper presents analysis and preliminary investigations of quantum cascade lasers for free space optics. The lasers radiate in the long wavelength IR spectral range (8-12 μm). Because of lower effects of radiation scattering than in the case of 1.5 μm free space optics, better transmission range can be obtained. The main task of the work was experimental investigation of quantum cascade lasers taking into consideration free space optics applications. In the research, quantum cascade lasers operating in both pulse and continuous wave modes were used. The lasers spectra as well as the operation characteristics (e.g. voltage vs. current) were measured. In conclusion, the quantum cascade lasers parameters for free space optics system applications are summarized.
5
76%
EN
The paper presents a prototype of a driving system designed to laboratory investigations of quantum cascade lasers. Significant requirements of these lasers operation, as well as a construction of the main components of the system were analyzed. During the performed investigations, a tuning range of both current pulses and temperature control operation were determined. Additionally the method of monitoring both current and voltage of the lasers was also described. As a summary, results of laboratory studies of the system with the use of commercial quantum cascade lasers were presented.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.