Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We report construction of a model of polar nanoregions in the PMN relaxor ferroelectric based on first-principles lattice dynamics for chemically ordered supercells [S.A. Prosandeev et al., Phys. Rev. B 70, 134110 (2004)], combined with invariance under permutations and dipole-dipole interaction as a source supporting randomly oriented residual polarization. Representative analytical estimates of polar nanore-gion - supercell mapping reproduce both nonzero local and zero macroscopic polarization of the structure, as well as the temperature change of the supercell anisotropy at cooling and field cooling.
EN
The photoluminescence spectra and luminescence excitation spectra of pure microcrystalline and nano-sized ZnWO4 as well as the ZnxNi1−x WO4 solid solutions were studied using vacuum ultraviolet (VUV) synchrotron radiation. The samples were also characterized by x-ray powder diffraction. We found that: (i) the shape of the photoluminescence band at 2.5 eV, being due to radiative electron transitions within the [WO6]6− anions, becomes modulated by the optical absorption of Ni2+ ions in the ZnxNi1−x WO4 solid solutions; and (ii) no significant change in the excitation spectra of Zn0.9Ni0.1WO4 is observed compared to pure ZnWO4. At the same time, a shift of the excitonic bands to smaller energies and a set of peaks, attributed to the one-electron transitions from the top of the valence band to quasi-localized states, were observed in the excitation spectrum of nano-sized ZnWO4.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.