Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 15

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Multilayer amorphous TiB_{x}/TiSi_{y}C_{z} coatings were formed by duplex treatment: dual beam ion beam assisted deposition and pulsed laser deposition. Post-deposition heating was applied to activate crystallization in the coating. In situ transmission electron microscopy heating experiments were conducted in the temperature range 20-600°C. Crystallization of TiB₂ phase in TiB_{x} layers begun at 450°C, while TiSi_{y}C_{z} layers retained nearly amorphous up to 600°C.
9
Content available remote

AFM, XRD and HRTEM Studies οf Annealed FePd Thin Films

76%
EN
Ferromagnetic FePd L 1_{0} ordered alloys are highly expected as forthcoming high-density recording materials, because they reveal a large perpendicular magnetocrystalline anisotropy [1]. The value of the magnetic anisotropy of FePd alloy strongly depends on the alloy composition, degree of alloy order as well as on the crystallographic grain orientation. In particular, to obtain the perpendicular anisotropy, it is necessary to get the films with (001) texture. One of the successful methods, which allows one to obtain highly ordered alloy, is a subsequent deposition of Fe and Pd layers, followed by an annealing at high temperature. This paper presents the study of the FePd thin alloy film structure changing in the result of high temperature annealing. During the annealing in high vacuum, the measurements of electrical resistance were performed, indicating the regions of different structure evolution. Changes in the crystal structure and surface morphology induced by thermal treatment were investigated by X-ray diffraction, atomic force microscopy, as well as high resolution transmission electron microscopy and then compared with electrical resistivity measurement. The slow thermal annealing of the deposited layers leads to the formation of L 1_{0} ordered FePd alloy with preferred (111) grain orientation. After the annealing at the highest used temperature, the dewetting process was observed, resulting in a creation of well oriented, regular nanoparticles.
12
76%
EN
The Ni/Al multilayer coating of λ ≈100 nm was deposited onto (001)-oriented monocrystalline silicon substrate using double target magnetron sputtering system equipped with rotating sample holder. The thicknesses of alternating layers were adjusted in the way to preserve the chemical composition ratio close to 50%Al:50%Ni (at.%). The in situ X-ray diffraction and in situ transmission electron microscopy heating experiments were carried out at relatively low heating rates (20°C/min) in order to study the phase transformation sequence. The investigations revealed that the reaction between Ni and Al multilayers starts at ≈200°C with precipitation of Al₃Ni phase, while above 300°C dominates precipitation of Ni₃Al and NiAl intermetallic phases. Both the X-ray and electron diffractions acquired at 450°C confirmed presence of the Ni₃Al and NiAl intermetallics, but the former pointed at still lasting traces of Ni(Al) solid solution.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.