Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
MBE grown Ge_{1-x-y}Mn_xSn_yTe layers with Mn content ranging from 10 to 30% and Sn content ranging from 2 to 5% have been characterized with X-ray diffraction, energy-dispersive X-Ray spectroscopy, atomic force microscopy, SQUID magnetometry, and ferromagnetic resonance. All layers (except the one with the highest Mn and Sn content) were found to be single phase rhombohedral, with the distortion axis perpendicular to the layer surface, and ferromagnetic. Ferromagnetic resonance studies have shown that co-doping with a few percent of tin makes the lattice more rigid and changes considerably the magnetocrystalline anisotropy, from purely uniaxial in GeMnTe to distorted cubic in Ge_{1-x-y}Mn_xSn_yTe at the same Mn content.
EN
We have studied magnetic properties of zinc-oxide composite doped with high concentration (up to 20%) of Co and Cr ions. The pulsed laser deposition method was used to obtain samples on quartz glass and sapphire substrates. Samples were annealed at 100-250°C for ZnO on quartz substrate, and 300-700°C on sapphire substrate. EMR measurements were carried out and temperature dependence of the EMR spectra was obtained. The angular dependence in two samples orientation, vertical and horizontal, were also obtained. Analysis of the temperature dependences of the integral intensity of EMR spectra was carried out using the Curie-Weiss law.
EN
We use exact recursion relations to study the magnetic properties of the half-integer mixed spin-5/2 and spin-3/2 Blume-Capel Ising ferromagnetic system on the two-fold Cayley tree that consists of two sublattices A and B. Two positive crystal-field interactions Δ1 and Δ2 are considered for the sublattice with spin-5/2 and spin-3/2 respectively. For different coordination numbers q of the Cayley tree sites, the phase diagrams of the model are presented with a special emphasis on the case q = 3, since other values of q reproduce similar results. First, the T = 0 phase diagram is illustrated in the (D A = Δ1/J,D B = Δ2/J) plane of reduced crystal-field interactions. This diagram shows triple points and coexistence lines between thermodynamically stable phases. Secondly, the thermal variation of the magnetization belonging to each sublattice for some coordination numbers q are investigated as well as the Helmoltz free energy of the system. First-order and second-order phase transitions are found. The second-order phase transitions become sharper and sharper when D A or D B increases. The first-order transitions only exist for some appropriate non-zero values of D A and/or D B. The corresponding transition lines never connect to the second-order transition lines. Thus, the non-existence of tricritical points remains one of the key features of the present model. The magnetic exponent β 0 of the model is estimated and found to be ¼ at small values of D A = D B = D and β 0 = ½ at large values of D. At intermediate values of D, there is a crossover region where the magnetic exponent displays interesting behaviours.
EN
The paper is focused on the results of Xe ions irradiation of nanocomposite FeCoZr-CaF₂ films synthesized in the oxygen-containing atmosphere. Combined influence of nanoparticles partial oxidation and ion irradiation with different fluences on the crystalline structure, phase composition and magnetic anisotropy is analysed by X-ray diffraction, the Mössbauer spectroscopy and vibrating sample magnetometry. The origin of the detected progressive enhancement of perpendicular magnetic anisotropy as the result of films oxidation and irradiation is discussed in the context of formation of nanoparticles oxide shells and ion tracks along the films normal.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.