Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The microstructure of an aluminum alloy containing 53 wt% Zn, 2.1 wt% Mg and 1.3 wt% Cu as main alloying elements has been studied with the focus on the precipitation behavior during the spark plasma sintering process. The starting material was an atomized Al-Zn-Mg-Cu powder with the particle size below 50 μm. The particles showed a solidification microstructure from cellular to columnar or equiaxed dendritic morphology with a large fraction of the alloying elements segregated in form of intermetallic phases, mainly (Zn,Al,Cu)₄₉Mg₃₂ and Mg₂(Zn,Al,Cu)₁₁, at the cell and dendrite boundaries. The microstructure of the sintered specimens followed the microstructure of the initial powder. However, Mg(Zn,Al,Cu)₂ precipitates evolve at the expense of the initial precipitate phases. The precipitates which were initially continuously distributed along the intercellular and interdendritic boundaries form discrete chain-like structures in the sintered samples. Additionally, fine precipitates created during the sintering process evolve at the new low-angle boundaries. The large fraction of precipitates at the grain boundaries and especially at the former particle boundaries could not be solved into the matrix applying a usual solid solution heat treatment. A bending test reveals low ductility and strength. The mechanical properties suffer from the precipitates at former particle boundaries leading to fracture after an outer fiber tensile strain of 3.8%.
2
Content available remote

Superplastic Behaviour of an Mg-Ag-RE Magnesium Alloy

100%
EN
Fine-grained magnesium alloy QE22 (Mg-2.5wt.%Ag-2.5wt.%RE-0.6wt.%Zr) was prepared from cast ingot which was submitted to a two stages heat treatment. Subsequently the billet was overaged and extruded at high temperature. Samples were deformed at elevated temperatures from 380°C up to 480°C at various strain rates. Microstructure of deformed samples was studied using light and electron microscopy. Conditions for superplasticity of the investigated alloys have been estimated. Possible deformation mechanisms are discussed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.