We propose a quantum dot implementation of a quantum state transfer channel. The proposed channel consists of N vertically stacked quantum dots with the nearest neighbor tunnel coupling, placed in an axial electric field. We show that the system supports high-fidelity transfer of the state of a terminal dot both by free evolution and by adiabatic transfer. The protocol is to a large extent insensitive to inhomogeneity of the energy parameters of the dots and requires only a global electric field.