Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The purpose of this study was to determine the effect of calcium (Ca) on the surface characteristics and physical properties of magnesium-calcium alloys after anodization. A novel binary alloy Mg-xCa (in which x=0.5, 1, or 5 wt.%) was cast by combining magnesium (99.9%) and calcium (99.9%) in an argon gas (99.99%) atmosphere. A magnesium alloy rod having a diameter of 15 mm was cut into discs, each 2 mm thick. The specimens were subjected to anodic oxidation at 120 V for 15 minutes at room temperature in an electrolyte solution consisting of calcium gluconate, sodium hexametaphosphate, and sodium hydroxide. Surface and cross-sectional morphological changes were observed using scanning electron microscopy, and the microstructures and phases were detected by means of X-ray diffraction. Hardness and surface roughness were assessed by means of a Vickers hardness tester and a surface roughness meter, respectively. The results show that the physical properties of these magnesium-calcium alloys have been improved, because it was possible to control the dissolution rate according to the amount of calcium added.
EN
The objective of this study was to evaluate the biocompatibility of studied binary magnesium-calcium (Mg-Ca) alloys for biodegradable intraosseous implants. Mg is necessary for health and is a non-toxic biodegradable material that decomposes naturally in the body. Nevertheless, Mg has been implicated in problems including diminished physical properties and corrosion resistance when degradation is too rapid prior to bone healing. This study has explored the effect of Ca on the corrosion resistance and biological evaluation after anodizing treatment with different contents of Ca alloy. Binary Mg-0.5Ca, Mg-1Ca and Mg-5Ca alloys were prepared by the casting method under an argon atmosphere and cut into disc-shaped pieces. Pure Mg alloy was used as the control. Anodic oxidation was performed for 15 minutes at a voltage of 120 V using an electrolyte solution containing Ca gluconate, sodium hexametaphosphate, and sodium hydroxide at room temperature. Corrosion resistance was analyzed using a corrosion tester. After a hydrogen evolution test, the surface pattern and phase changes were observed on a scanning electron microscop (SEM) and energy dispersive spectroscop (EDS). Microscopic evaluation of the adhesion and cell biological functions of Mg was conducted by observing the response of human fetal osteoblastic 1.19 cells with regard to changes in surface film properties, depending on the amount of Ca. Our results support the view that in Mg-xCa alloys (x=0.5, 1, 5 wt.%) treated using anodic oxidation, the increasing Ca content controls the rate of decomposition and improves corrosion resistance.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.