Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Magnetic ordering in TbB_{66} and GdB_{66} was investigated at very low temperatures. Measurements of ac susceptibility have shown rather clear features of magnetic ordering below 1 K, at 0.34 K for TbB_{66} and at 0.20 K for GdB_{66}. However, no clear evidence of long range magnetic order was found by neutron scattering experiments. Reasons leading to these observations are discussed.
2
76%
EN
We present results of transport and magnetic properties of three single-crystalline samples of the intermediate valence small-gap semiconductor SmB_{6} at low temperatures. The received resistivity dependences of the samples below 0.5 K exhibit an activated behavior with an energy gap of a few mK. The temperature dependences of the magnetic susceptibility show an increase below 15 K which can be accounted for by impurities, by bare Sm^{3+} ions or by a small amount of in-gap magnetic 4f^{5}5d^{1} states.
EN
The magnetocaloric effect of frustrated antiferromagnetic HoB_{12} is calculated. The isothermal entropy change Δ S characterising the magnetocaloric effect shows a small positive change upon magnetisation below the transition temperature T_{N}, indicating a small inverse magnetocaloric effect. At T_{N}, Δ S shows clear scaling behaviour with the applied magnetic field. The adiabatic temperature change Δ T shows paramagnetic behaviour above T_{N}, despite strong magnetic correlations that persist in this temperature region. The adiabatic temperature change calculated for HoB_{12} is appreciable.
EN
In the system Tm_{1 - x}Yb_{x}B_{12} the specific heat has been studied in a wide range of Yb-concentration in the vicinity of the quantum critical point x_{C} ≈ 0.3. The results were obtained on high quality single crystalline samples of Tm_{0.7}Yb_{0.3}B_{12} compound placed near quantum critical point, both for antiferromagnetic metals (x < x_{C}) as well as for paramagnetic insulators (x > x_{C}) within a wide temperature range of 1.9-300 K in magnetic field up to 9 T. The temperature dependence of the magnetic contribution to specific heat for Tm_{0.74}Yb_{0.26}B_{12} shows a logarithmic divergence of the form C_{mag}/T∿-lnT at T<4 K, which may be attributed to the quantum critical regime, and it is suppressed by strong external magnetic field. The Schottky anomaly of the magnetic contribution to specific heat in Tm_{1 - x}Yb_{x}B_{12} has been established and analyzed in detail.
5
Content available remote

Defect Mode in LaB_{6}

52%
EN
The specific heat of high quality La^{N}B_{6} (N=10, 11, natural) single crystals is investigated in a wide range of temperatures 2 - 300 K. The obtained data allow to estimate correctly (i) the electronic γ· T term of specific heat (γ ≈ 2.4 mJ/(mol·K^{2})), (ii) the contribution from quasilocal vibrating mode of La^{3+} ions (Θ_{E} ≈ 150 - 152 K), (iii) the Debye-type term from rigid boron cages (Θ_{D} ≈ 1160± 40 K). Our data also suggest an additional defect-mode component (iv) which may be attributed to a contribution of 1.5% boron vacancies in LaB_{6}. The obtained results may be interpreted in terms of formation of two level systems, which appear when La^{3+} ions are displaced from their centrosymmetric positions in the cavities of rigid boron cages, apart from randomly distributed boron vacancies in the LaB_{6} matrix.
EN
The antiferromagnetic ground state has been studied by transverse magnetoresistance, heat capacity and magnetization measurements, which were carried out on high quality single crystals of Tm_{0.996}Yb_{0.004}B_{12} dodecaboride in strong magnetic fields at liquid helium temperatures. Both antiferromagnetic-paramagnetic (AF-P) and spin-orientation (AF1-AF2) phase transitions have been observed, and allowed to construct a complicated magnetic H-T phase diagram for this compound. Strong magnetoresistance anisotropy was found both in AF states (ρ(H||[110])/ρ(H||[111])~ 1.2 at H~ 20 kOe) and at the critical field of AF-P transition (H_{N}[100]/H_{N}[111]~ 1.25) in this magnetic metal with a simple fcc crystal structure.
EN
We probed the evolution of the superconducting transition temperature T_c and the normal state parameters of Lu_xZr_{1-x}B_{12} solid solutions employing resistivity, heat capacity and magnetization measurements. In these studies of high-quality single crystals it was found that there are two types of samples with different magnetic characteristics. An unusually strong suppression of superconductivity in Lu_xZr_{1-x}B_{12} with a rate dT_c/dx=0.21 K/at.% of Lu was observed previously on the first "magnetic" set of crystals, and it was argued to be caused by the emergence of static spin polarization in the vicinity of non-magnetic lutetium ions. On the contrary, the second (current) set of "nonmagnetic" crystals demonstrates a conventional T_c(x) dependence with a rate dT_c/dx=0.12 K/at.% of Lu which is typical for BCS-type superconductors doped by nonmagnetic impurities. The reason for this difference is yet unclear. Moreover, the H-T phase diagram of the superconducting state of Lu_xZr_{1-x}B_{12} (0 ≤ x ≤ 1) solid solutions has been deduced from magnetization measurements.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.