In this paper, the effects of P_2O_5 and heat treatment on the crystalline phases and microstructure of lithium disilicate-barium disilicate glass were examined. A wider and broad peak in the differential thermal analysis curve indicates a presence of surface crystallization instead of volume crystallization despite the use of nucleating agent, P_2O_5. The heat treatment schedules were planned according to differential thermal analysis data. The controlled crystallization of the compositions studied was carried out using two-stage heat treatment procedure. The glass transition temperature, T_{g} of the as-cast sample were used to determine the optimum nucleation temperature. The optimum nucleation temperature was determined to be 520°C. The crystallization was carried out at 720C and 880C for 15 min. Lithium disilicate and sanbornite was the major phases and moganite or coesite were also present depending on the heat treatment duration. Due to coexistence of lithium disilicate and barium disilicate phases, the change in the melting entropy prevented the formation of spherulitic morphology and recrystallization after further heat treatments. The rise in the crystallization temperature enhanced grain coarsening and formed massive microstructures.
In this work, the effects of mechanical alloying on the mechanical properties of BaTiO_3 were investigated. In order to examine the milling conditions and sintering parameters on the solid state formation of BaTiO_3, X-ray diffraction technique was used. After mechanical alloying process, nanosized powder mixtures were produced. Sintering temperatures were 600, 700, 800, 900, 1000, and 1200C and sintering duration was 1 h. Besides X-ray diffraction examinations, mechanical properties of the BaTiO_3 samples were determined by Vickers microhardness test.
Barium hexaferrite samples were prepared by mechanical alloying using the stoichiometric amounts of BaCO₃ and Fe₂O₃ precursors followed by heat treatment applied in the temperature range 700-1150°C. It was found that the high energy ball mill with a milling rate enabled to obtain powders with the finer particles at the reduced milling time mechanical alloying of the initial powders linked to the formation of barium hexaferrite phase. The exothermic reaction peaks corresponding to the formation of BaFe₁₂O₁₉ phase shift from 928°C to 793°C for the increased milling time up to 6 h. This was resulted in improved magnetic properties that the Mₛ value of the as-blended sample sintered at 800°C rised from 31.16 emu/g to 53.46 emu/g after milling for 6 h. The saturation magnetization and remanence values of the samples mechanically alloyed for 3 h and sintered at 1150°C also increased to 63.57 emu/g and 31.26 emu/g, respectively, more than for 800°C and 900°C. The increase in the annealing temperature favours the formation of BaFe₁₂O₁₉ phase in the samples.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.