Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
NiTi-based shape memory alloys are metallic materials exhibiting remarkable response to mechanical and/or thermal loading, e.g. superelasticity, pseudoplasticity or one-way shape memory effect. They can be engineered into structures of micro-size dimensions, hence, they appear promising for application in micro-electromechanical systems. For their efficient utilization, appropriate characterization is important. Due to relative simplicity, indentation represents a very standard and popular technique for basic characterization of metallic materials providing information about stiffness and hardness. Moreover, it can be used for identification of other events in the material. This study aims to verify applicability of the recently developed constitutive model for NiTi-based shape memory alloy in simulations of nanoindentation tests. The model is fitted to a particular sample material using experimental data, and a series of simulations mimicking tests at various temperatures is performed. Since the model also captures two-stage martensitic transformation via the intermediate R-phase, its influence on the simulations is investigated as well. It is confirmed that spherical indentation is a suitable method for simple and fast detection whether the material is in superelastic or pseudoplastic regime.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.