Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Composite structures are made from two or more constituent materials with significantly different physical or chemical properties and they remain separate and distinct in a macroscopic level within the finished structure. This feature allows us for introducing an optical fiber sensors matrix into the composite material. These sensors can demonstrate stress distribution inside a tested material influenced by external tensions. Two types of the optical fiber sensors, placed into one fiber simultaneously, are used as s matrix structure. One of them is based on application of the Bragg grating structure written inside the core of the fiber. Longitudinal stress modifies changes parameters of the Bragg grating and in the same, spectral characteristics of the light transmitted through the fiber. The second one is based on application of highly birefringent fibers which under external stress introduce polarization changes in the output light. These sensors placed into one fiber give a possibility to the measure two external tensions separately.
EN
Polarimetric optical fiber sensors possess possibility of temperature compensation, dynamic and integral system of strain monitoring, as well as low cost of photo-detecting elements. In the paper we present results of the sensor analysis with different kinds of birefringent optical fibers leading to an optimal setup for dynamic strain monitoring in composite materials. A great attention is put on parameters of the light sources like coherence and width of spectrum and their influence on dynamics of the strain sensor.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.