Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Ultrasound elastography is a revolutionary medical imaging technique, enabling a quantitative and qualitative evaluation of tissue stiffness. This paper presents, based on published evidence, a wide range of possibilities for this method in clinical trials and scientific research. The use of dynamic elastography avoids the undesired influence of force applied to the tissue by the elastograph probe on the information content of the obtained image. In clinical practice, elastography is used to identify and examine the pathological condition of soft tissues (including cancer lesions and tendonitis) and to diagnose neuromuscular diseases. It is also used in scientific investigations as a non-invasive method to study the structure of skeletal muscle, including muscle thickness, fiber length and pennation angle using standard ultrasonography mode; it is also possible to obtain information about physical properties such as stiffness. Ultrasound elastography could also be a useful tool for physiotherapists monitoring the rehabilitation process. Based on the results of these studies, advances in elastographic imaging technology, and progress in biomedical diagnostic methods, elastography is expected to become a common method used in clinical diagnostics and scientific research.
EN
This study investigated the effects of supplementation with Krill oil on levels of pro-oxidant/antioxidant balance markers and levels of pro-inflammatory cytokines in professional rowers submitted to exhaustive exercise.This double-blind study included 17 members of the Polish National Rowing Team. Subjects were randomly assigned a supplemented group (n=9) which received two capsules (500 mg) of Krill oil daily for 6 weeks, or a placebo group (n=8). At the beginning and at the end of preparatory camp, subjects performed a 2000 m maximum effort test on a rowing ergometer. Blood samples were taken from the antecubital vein prior to each exercise test, 1 minute after completing the test, and after 24-hours of rest. The following redox parameters were assessed in erythrocytes: superoxide dismutase (SOD), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) concentration. Additionally, creatine kinase (CK) activity was measured in plasma samples, while tumor necrosis factor (TNF-α) concentrations were measured in the serum.Exercise significantly increased values of SOD, TNF-α and TBARS in both groups, but recovery levels of TBARS were significantly lower in athletes receiving Krill oil compared with the control group.Based on these results we conclude that supplementation with Krill oil (1 g per day) in trained rowers diminished post exercise oxidative damage to erythrocytes during recovery, but had no effect on antioxidant enzymes, TNF-α and serum lipid profiles.
EN
The purpose of this study was to evaluate the efficacy of inertial training with different external loads using a new original device - the Inertial Training and Measurement System (ITMS). Forty-six physical education male students were tested. The participants were randomly divided into three training groups and a control group (C group). The training groups performed inertial training with three different loads three times weekly for four weeks. The T0 group used only the mass of the ITMS flywheel (19.4 kg), the T5 and T10 groups had an additional 5 and 10 kg on the flywheel, respectively. Each training session included three exercise sets involving the shoulder joint adductors. Before and after training, the maximal torque and power were measured on an isokinetic dynamometer during adduction of the shoulder joint. Simultaneously, the electromyography activity of the pectoralis major muscle was recorded. Results of the study indicate that ITMS training induced a significant increase in maximal muscle torque in the T0, T5, T10 groups (15.5%, 13.0%, and 14.0%, respectively). Moreover, ITMS training caused a significant increase in power in the T0, T5, T10 groups (16.6%, 19.5%, and 14.5%, respectively). The percentage changes in torque and power did not significantly differ between training groups. Electromyography activity of the pectoralis major muscle increased only in the T0 group after four weeks of training. Using the ITMS device in specific workouts allowed for an increase of shoulder joint adductors torque and power in physical education students.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.