Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Raman Piezospectroscopy of Phonons in Bulk 6H-SiC

100%
EN
Raman piezospectroscopy of high quality 6H-SiC crystals is presented. The crystals used in experiments were grown by the seeded physical vapor transport method. Uniaxial stress up to 0.9 MPa, obtained using a spring apparatus, was applied along [11-20] and [10-10] directions. It was found that the application of uniaxial stress led to different energy shifts of the observed phonon excitations in the investigated 6H-SiC crystals. The obtained pressure coefficients vary in the range 0.98-5.5 cm^{-1} GPa^{-1} for different transverse optical phonon modes. For longitudinal optic phonon modes pressure coefficients in the range 1.6-3.6 cm^{-1} GPa^{-1} were found. The data obtained could be useful in evaluation of local strain fields in SiC based structures and devices including epitaxial graphene.
EN
X-ray reflectometric and diffraction topographic methods were applied for examination of 4H and 6H silicon carbide substrates finished with various regimes, as well as, silicon carbide epitaxial layers. The investigations indicated a very good quality of the substrate surfaces finished with the process established at the Institute of Electronic Materials Technology, which provided the surface roughness σ = 0.55 ± 0.07 nm for 4H-SiC wafers. These values were better than those of substrate wafers offered by many commercial producers. The surface roughness was decreased during the initial high temperature etching to σ = 0.22 ± 0.07 nm. A relatively good structural quality was confirmed in the case of 4H epitaxial wafers deposited on the substrates prepared from the crystals manufactured at the IEMT, with the 8° off-cut from the main (001) plane.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.