Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the present work neutron diffraction has been applied for ex situ investigation of residual stresses in Mg-4%Al-1%Ca (AX41) magnesium alloy reinforced with short Saffil fibers. Samples were deformed in compression at room temperature. Two types of fiber arrangement were investigated. In both samples the fibers were homogeneously distributed and arranged in parallel planes with a random fiber orientation. In the first sample these planes were parallel with the loading axis and in the second one they were perpendicular to the loading direction. Significant dependence of both the mechanical properties and residual strains on the fibers orientation was observed. Sample with parallel fiber arrangement showed higher hardness and lower ductility. Further the increment of residual tensile lattice strain in the matrix with a macroscopic deformation is much higher than in the other case. It was found that the residual strain evolution strongly depends on the orientation of grains in the matrix.
EN
Co-Re-based alloys strengthened by carbides are promising candidates for new high-temperature alloys for gas turbine applications. The high temperature microstructure and its stability are of utmost importance, e.g. due to strengthening-phase selection. Neutron scattering, providing in situ information at high temperatures, was extensively used in the past for the Co-Re alloys research. The paper focuses on TaC strengthened alloy, particularly on the stability TaC precipitates which were previously shown not to dissolve up to at least 1300°C. Small-angle neutron scattering shows that its finer morphological variant - most suitable for high temperature strengthening - coarsened even at relatively low temperature of 1000°C. This coarsening is faster at higher temperatures and the mean size exceeded 1000 Å (i.e. the size - detection limit of the used facility) after 4 h hold at 1200°C.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.