Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Differential dynamical subgap transport measurements were performed on LSMO/YBCO/LSMO trilayers to probe local evolution of the Andreev bound states which are manifested as the zero bias conductance peak. Dynamical conductivity dI/dV vs. magnetic field measured in current in plane and current perpendicular to plane geometries show nonmonotonic behavior with maximum at about 500 Oe. The shape of the zero bias conductance peak measured in current in plane geometry is sharp, whereas zero bias conductance peak measured in current perpendicular to plane geometry demonstrates V shape. These shapes of the zero bias conductance peak were predicted theoretically for unconventional p-wave spin triplet phase superconductor and superconductor with d-wave symmetry of the order parameter, respectively.
EN
Bilayered epitaxial BiFeO_3/YBa_2Cu_3O_7 films were fabricated on (100) [(LaAlO_3)_{0.3}(Sr_2TaAlO_6)_{0.7}] substrates by sputtering method. For structural comparison the bilayered BiFeO_3/La_{0.67}Sr_{0.33}MnO_3 films were also deposited on (100) SrTiO_3 substrates. A weak ferromagnetic moment is observed in BiFeO_3/YBa_2Cu_3O_7 films. The mechanism responsible for weak ferromagnetic moment arises presumably from the epitaxy strain induced canted antiferromagnetic structure.
EN
Complex perovskite oxides exhibit a rich spectrum of functional responses such as: superconductivity, magnetism etc. Combination of different oxides in multilayered structures increases the number of physical responses. Heterogeneous oxide structures represent a new class of nanostructures. They consist of ferromagnetic La_{0.67}Sr_{0.33}MnO_3 (F-LSMO) manganite and superconducting YBa_2Cu_3O_7 (Sc-YBCO) cuprate. The interaction between the two order parameters gives rise to new physical effects. In this review we will discuss various physical effects obtained in the bilayer and trilayer heterostructures. For example, the LSMO/YBCO bilayer structures are used to study the mechanism of magnetic pinning. The other possibility is the fabrication of spin valve-like structures LSMO/YBCO/LSMO. The spin dependent transport in trilayer structure was studied taking into account crossed Andreev reflection and electron co-tunneling processes.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.