Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2009
|
vol. 7
|
issue 4
753-761
EN
Using First-principle calculations, we have studied the structural, electronic and elastic properties of M2TlC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions are higher along the c-axis than along the a axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The band structures show that all three materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Tl p hybridizations. The M d-C p bonds are lower in energy and stiffer than M d-Tl p bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus and Poisson’s ratio for ideal polycrystalline M2TlC aggregates. We estimated the Debye temperature of M2TlC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2TlC, Zr2TlC, and Hf2TlC compounds that requires experimental confirmation.
EN
Using the spin-polarized relativistic Korringa-Kohn-Rostoker method, we study the electronic and magnetic properties of Fe₂NiAs compound with the Hg₂CuTi structure. Electronic calculations reveal the d-d orbital hybridization taking an important role in the compound. The calculated magnetic moments, which contain the spin and orbital moments, are primarily carried by Fe atoms located in A and B sites. The orbital moment of Fe₂NiAs system is rather small due to the cause of orbital quenching, implying a weak spin-orbit coupling. Simultaneously, we also study the influence of lattice constant on the magnetic moment, it is found that both spin and orbital moments are sensitive to the changes of lattice constants, i.e., the moments become larger as the expansion of lattice constant, indicating the enhancement of spin-orbit coupling effect. In addition, we investigate the magnetic interactions between the constituents to obtain the Heisenberg exchange coupling parameters. It is noted that the interactions are dominated by a strong exchange between Fe atoms. Finally, we acquire the Curie temperatures of Fe₂NiAs compound under different lattice constants by using mean field approximation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.