Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2009
|
vol. 7
|
issue 3
527-533
EN
Non-resonant fusion cross-sections significantly higher than corresponding theoretical predictions are observed in low-energy experiments with deuterated matrix target. Models based on thermal effects, electron screening, or quantum-effect dispersion relations have been proposed to explain these anomalous results: none of them appears to satisfactory reproduce the experiments. Velocity distributions are fundamental for the reaction rates and deviations from the Maxwellian limit could play a central role in explaining the enhancement. We examine two effects: an increase of the tail of the target Deuteron momentum distribution due to the Galitskii-Yakimets quantum uncertainty effect, which broadens the energy-momentum relation; and spatial fluctuations of the Debye-Hückel radius leading to an effective increase of electron screening. Either effect leads to larger reaction rates especially large at energies below a few keV, reducing the discrepancy between observations and theoretical expectations.
Open Physics
|
2008
|
vol. 6
|
issue 3
563-568
EN
The main methods describing polarization of electromagnetic waves in weakly anisotropic inhomogeneous media are reviewed: the quasi-isotropic approximation (QIA) of geometrical optics method that deals with coupled equations for electromagnetic field components, and the Stokes vector formalism (SVF), dealing with Stokes vector components, which are quadratic in electromagnetic field intensity. The equation for the Stokes vector evolution is shown to be derived directly from QIA, whereas the inverse cannot be true. Derivation of SVF from QIA establishes a deep unity of these two approaches, which happen to be equivalent up to total phase. It is pointed out that in contrast to QIA, the Stokes vector cannot be applied for a polarization analysis of the superposition of coherent electromagnetic beams. Additionally, the ability of QIA to describe a normal modes conversion in inhomogeneous media is emphasized.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.