Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and thin-layer chromatography (TLC) have been used to study dopamine and iron mediated free-radical transformation of lipids in their hydrophilic parts. It has been shown that the action of the dopamine/Fe2+ system on galactocerebroside or cardiolipin, which are the components of mixed micelles, results in formation of ceramide or phosphatidic acid and phosphatidylhydroxyacetone, respectively. These data, when combined with results obtained using the ascorbate/Fe2+/H2O2 oxidizing system with the same substrates, demonstrate that the formation of these products proceeds via an OH-radical induced fragmentation taking place in polar moiety of the starting lipids. [...]
EN
Cu (II) complexes with the sterically hindered diphenol derivatives 3,5-di(tert-butyl)-1,2-benzenediol (I), 4,6-di(tert-butyl)-1,2,3-benzenetriol (II) and the sulfur-containing 4,6-di(tert-butyl)-3-(2-hydroxyethylsulfanyl)-1,2-benzenediol (III) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (IV) have been synthesized and characterized by elemental analysis, TG/DTA, FT-IR, ESR, XPS, XPD and conductivity measurements. Compounds I–III can coordinate in their singly deprotonated forms and act as bidentate ligands. These compounds yield Cu (II) complexes of the stoichiometry Cu(L)2, which have square planar geometry (g| > g⊥ > ge). Unlike them, compound IV behaves as a terdentate ligand, and its complex Cu(LIV)2 has distorted octahedral geometry. According to ESR data, only the Cu(LII)2 complex contains a very small amount of phenoxyl radicals. Antimicrobial activities of these ligands and their respective Cu (II) complexes have been determined with respect to Gram-positive and Gram-negative bacteria, as well as on yeasts. Their phytotoxic properties against Chlorella vulgaris 157 were also examined.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.