Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Electronic transport in a nanoscopic magnetic tunnel junction with magnetic particles or magnetic impurity atoms/molecules embedded in the barrier is studied theoretically. The impurity Hamiltonian includes magnetic anisotropy of easy axis type with additional perpendicular term. The description takes into account both elastic tunneling processes as well as inelastic processes associated with a flip of electron spin.
EN
The effect of transverse magnetic anisotropy on spin-dependent transport through a large-spin molecule strongly tunnel-coupled to ferromagnetic electrodes is analyzed theoretically. In particular, we investigate whether it is possible to observe in transport signatures of oscillations of the ground-state doublet splitting due to the application of an external magnetic field along the molecule's hard axis. We show that magnetic field leads to revivals of the Kondo effect, with the Kondo temperature depending on the magnetic configuration of the device.
EN
The dynamics of the current-induced magnetic switching process is theoretically studied in a spin-valve device containing a single magnetic molecule of spin S=1. The analysis is performed by using the real-time diagrammatic technique in the sequential electron tunneling regime. In particular, we show that the magnetic moment of a molecule can be reversed also in the presence of intrinsic spin relaxation processes. Moreover, we discuss how the process of magnetic switching depends on a transport bias voltage as well as on some key parameters of the device.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.