Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this study, bending behavior of hybrid composites reinforced by different type of fibers is investigated experimentally. In the preparation of composite samples with different number of layers having the same thickness and woven shaped glass, aramid and carbon fibers are used and three-point bending test is carried out to determine bending behavior. It is seen from the test results that, regardless of fiber type, the load bearing capacity and energy absorption capability are increased by increasing layer number. As a result of evaluation of hybrid composites containing different fibers with respect of load-carrying capability and energy absorbing capacity, aramid-fiber reinforced composite with 2 and 4 layer provides better performance. T+2GF+2CF+2AF specimen can be preferred in between 10 layered hybrid tubes and T+2GF+2AF+6CF and T+2GF+2CF+6AF specimens in 10 layered hybrid tubes. Load carrying capacity of hybrid tubes increased 7 times and energy absorbing capacity 9.6 times, respectively.
EN
In this study, mechanical behavior of epoxy composite reinforced by unidirectional and woven fiber is investigated experimentally. In the preparation of composite samples woven shaped glass, aramid and carbon fibers and unidirectional shaped glass and carbon fibers were used. Tension, compression and shear tests were carried out to determine mechanical properties of composites. It is seen from the test results, that unidirectional carbon fiber shows better performance than the glass fiber. Mechanical properties of 0°-oriented unidirectional fiber are better than those of 90°-oriented unidirectional fiber. Mechanical properties of aramid-fiber-reinforced composite are higher than those of glass and carbon fiber, when the woven types of fibers are considered.
EN
In this study, the effects of pre-forming and foam reinforcement on the axial compression behavior of circular thin-walled aluminum tubes were experimentally investigated. Compression tests were performed in a computer controlled test machine at the cross-head speed of 1 mm/s. Pre-forming has changed the folding behavior of tube and increased the energy absorbing capacity 1.26 times that of empty tube. The PVC reinforcement has increased the energy absorbing capacity 1.22 times. PVC reinforcement increases the stability of tube wall deformation; hence it positively affects the energy absorption. The energy absorbing capacity of pre-formed and PVC foam reinforced tubes increase approximately 1.4 times that of empty tube. It was however shown that the reinforcement and pre-forming had no significant effect on the maximum load.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.