Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Loss of heterozygosity at BRCA1/2 loci in breast and ovarian tumors is a suggested risk factor for germline BRCA1/2 mutation status. We evaluated the presence of losses of selected microsatellite markers localized on chromosomes 17 and 13q in hereditary and sporadic ovarian tumors. 151 consecutive primary ovarian tumors (including 21 with BRCA1/2 mutations and 130 without the mutations) were screened for loss of heterozygosity at loci on chromosomes 17 and 13q. Losses of heterozygosity of at least one microsatellite marker localized on chromosomes 17 and 13q were revealed in 123 (81.5%) and 104 (68.9%) tumors, respectively. Losses of all informative markers on chromosomes 17 and 13 occurred in 30 (19.9%) and 31 (20.5%) tumors, respectively. There was no difference in the frequency of losses at BRCA1 intragenic markers (D17S855 and D17S1323) between BRCA1-positive and BRCA1-negative patients. The frequency of losses on chromosome 17 was higher in high-grade than in low-grade carcinomas. Loss of heterozygosity on chromosomes 17 and 13q is a frequent phenomenon in both hereditary and sporadic ovarian cancers. The frequency of losses at BRCA1 intragenic markers in the ovarian tumor tissue is not strongly related to the presence of BRCA1 germline mutations.
EN
Patients with the long QT syndrome (LQTS) suffer from cardiac arrhythmias that can lead to abrupt loss of consciousness and sudden death, already in young individuals. Thus, an early diagnosis of LQTS is essential for patients and their family members. So far, six genes (KCNQ1, HERG, SCN5A, ANK2, KCNE1, KCNE2) have been demonstrated to be involved in the development of LQTS. Since this syndrome is genetically heterogeneous and large-sized families are often not available for linkage analysis, alternative tools are required for a genetic diagnosis. To investigate genes with numerous exons, like KCNQ1, HERG, SCN5A and ANK2, segregation analysis of a Polish Romano-Ward family with eight members was performed as a reliable method faster than linkage analysis or direct sequencing. To test these four LQT loci, an appropriate selection of microsatellite markers covering different chromosomal regions was applied. Furthermore, two small genes KCNE1 and KCNE2 (at the LQT5 and LQT6 loci), and the SGK1 gene (encoding a kinase regulating KCNE1 and SCN5A channels) were sequenced. All six LQT loci and the SGK1 gene were excluded by these analyses, thus a different pathogenic mechanism of LQT syndromes can be presumed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.