Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The effect of implantation of Ne⁺, Kr⁺, and Bi⁺ ions over the energy range 26-710 MeV on the structural-phase state and the mechanical properties of the aluminum-based alloys (Al-Cu, Al-Cu-Mg, Al-Cu-Zn, Al-Mn) was studied. The revealed peculiarities of variations in the structure, phase composition, and mechanical properties of aluminum alloys are attributed to the electron deceleration of ions making the principal contribution to the formation of radiation defects which enhance the diffusion processes in the targets.
EN
This article makes a brief review of the most important results obtained by the authors and their collaborators during the last four years in the field of the development of metal-insulator-silicon structures with dielectric film containing silicon nanocrystals, which are suitable for applications in radiation dosimetry. The preparation of SiOx films is briefly discussed and the annealing conditions used for the growth of silicon nanocrystals are presented. A two-step annealing process for preparation of metal-oxide-semiconductor structures with three-layer gate dielectrics is described. Electron Microscopy investigations prove the Si nanocrystals growth, reveal the crystal spatial distribution in the gate dielectric and provide evidences for the formation of a top SiO2 layerwhen applying the two-step annealing. Two types of MOS structures with three region gate dielectricswere fabricated and characterized by high frequency capacitance/conductancevoltage (C/G-V) measurements. The effect of gamma and ultraviolet radiation on the flatband voltage of preliminary charged metal-oxide-semiconductor structures is investigated and discussed.
EN
The effect of nitrogen ion implantation on Stellite 6 cobalt alloy was investigated. In this research, cobalt alloy was implanted with 65 keV nitrogen ions at the fluence of (1÷10)×10¹⁶ N⁺/cm². The distribution of implanted nitrogen ions and vacancies produced by them was calculated using the SRIM program. The surface morphology was examined and the elemental analysis was performed using scanning electron microscopy, energy dispersive X-ray spectroscopy and grazing incidence X-ray diffraction. The wear tests were conducted with the use of the pin-on-disc method. The results demonstrate that implantation with nitrogen ions significantly reduces the friction factor and wear. The friction coefficient of the implanted sample at the fluence of 1×10¹⁷ N⁺/cm² increased to the values characteristic of an unimplanted sample after 5000 measurement cycles. The depth of the worn trace was about 2.0 μm. This implies that the thickness of the layer modified by the implantation process is ≈2.0 μm and exceeds the initial range of the implanted ions by an order of magnitude. This is referred to as a long-range implantation effect. The investigations have shown that the long-range effect is caused by movement of not only implanted nitrogen atoms but also carbon dopant atoms towards the friction zone. Diffusion of carbon atoms has been documented here for the first time. Furthermore, the increased content of oxygen atoms on the track bottom indicates a dominant oxidative wear of the Stellite samples after nitrogen implantation with the energy 65 keV and the fluences of 5×10¹⁶ and 10¹⁷ N⁺/cm².
EN
This work is devoted to the calculation of the concentration of radiation displacement defects (RDD) in bismuth germanate and bismuth silicate crystals as a function of particle energy (electrons and neutrons). Energy dependencies of RDD concentrations are discussed in comparison with results for other complex oxide crystals. The obtained results show that for the case of electron irradiation the radiation hardness of BSO and BGO should be similar to other oxide crystals, but for neutrons is drastically smaller. Additionally, for the neutron irradiation, the efficiency of the production of defects in the oxide sublattice is drastically smaller than for other oxide crystals.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.