Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A brief overview of the deposition and properties of YBa_{2}Cu_{3}O_{7} (YBCO) based heterostructures is presented. Emphasis is placed on the assessment of the deposition process and the properties of practical thin films and heterostructures of layered oxides. Besides a reference to the literature we present our recent results concerning deposition, structural and magnetic properties of YBa_{2}Cu_{3}O_{7} /RE_{1-x}A_{x}MnO_{3} (YBCO/REMO) heterostructures.
EN
We report on the growth, structural and magnetic characterization of Nd_{0.81}Sr_{0.19}MnO_3/YBa_2Cu_3O_7 (NSMO/YBCO) superlattices. The NSMO system for the doping level of x=0.19 is a ferromagnetic insulator. Multilayers with a fixed NSMO thickness of 13 unit cells and a varying YBCO layer thickness from 2 unit cells to 6 unit cells were sputtered on LaAlO_3 substrates. An onset of superconducting transition is seen starting from the multilayer with 3 unit cells of YBCO layer thickness. Hysteresis loops recorded above and below the superconducting transition show a signature of interlayer exchange coupling.
EN
We report the synthesis and characterization of Nd_{0.5}Sr_{0.5}MnO_3/YBa_2Cu_3O_7 superlattices. X-ray diffraction studies show that the superlattices are [001] oriented. We observe that the magnetic ground state of Nd_{0.5}Sr_{0.5}MnO_3 system in a multilayered structure is strongly dependent on the substrate.
EN
The M_1/MgO/M_2 trilayer tunnel magnetoresistance systems are studied by means of X-ray diffraction, NMR, and transmission electron microscopy techniques. As M_1 and M_2 electrodes we used Co, Fe, and CoFe layers. The growth mechanism and structural quality of both electrodes and of the epitaxial MgO barrier forming the magnetic tunnel junctions are experimentally examined. It is shown that the crystallographic coherence of magnetic tunnel junctions across the MgO barrier is significantly disturbed by imperfect crystal structure of magnetic electrodes. The NMR results indicate a difference in short-range order between bottom and top electrodes.
EN
The electromagnetic coupling between the magnetic and the superconducting layers in perovskite heterostructures is investigated by means of the magneto-optical technique. The quantitative imaging of the magnetic field distribution allows the high-resolution reconstruction of local supercurrent density. Two phenomena arising from the coupling between manganite layer and the YBa_2Cu_3O_{7-δ} superconducting film deposited on top are addressed, i.e., the local effects of the electronic coupling between the compounds and the interaction between the manganite magnetic moments and the vortices in the superconductor. The first issue can be quantified in terms of the local superfluid density depression/enhancement in correspondence to the underlying magnetic structure, both domains and domain walls (in dependence on the orientation and sign of the local magnetization) and of the spontaneous, macroscopic screening current loops generated by the manganite domain walls. The interaction between the local manganite magnetization and the superconducting vortices is also influenced by structural defects because they modulate the magnetic pattern of the manganite. Different channelling phenomena in correspondence to the natural twin boundaries of the substrate, but locally magnetized by pinned domain walls of the manganite on their locations, are recognized.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.