Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Microwave saturation of EPR spectra of oxidised coal

100%
EN
Microwave saturation of multi-component EPR spectra of oxidized lignite Mequinenza (Spain) with a carbon content of 65.1 wt % and with a high sulphur content of 10.3 wt % was studied. The coal was oxidized with nitric acid (NHO3), peroxyacetic acid (PAA), and in O2/Na2CO3 system. Three different groups of paramagnetic centres exist in the coal samples analyzed. The EPR spectrum of the demineralised coal was a superposition of broad Gauss (ΔB pp = 0.75 mT), broad Lorentz 1 (ΔB pp = 0.42 mT) and narrow Lorentz 3 lines (ΔB pp = 0.08 mT). The three EPR components with linewidths: 0.58–0.77 mT (Gauss line), 0.30–0.39 mT (Lorentz 1 line) and 0.05–0.06 mT (Lorentz 3 line) were recorded for the oxidized coal. The g-values were obtained for the samples studied in the ranges 2.0043–2.0046 (Gauss lines), 2.0035–2.0038 (Lorentz 1 lines) and 2.0032–2.0034 (Lorentz 3 lines). The broad Gauss and Lorentz 1 lines saturate at low microwave powers. The narrow Lorentz 3 lines of demineralised coal were not saturated at microwave power from the range considered. After the coal oxidation with HNO3, PAA and in O2/Na2CO3 system, the microwave saturation of the narrow Lorentz 3 lines was also observed, which indicated a degradation of the multi-ring aromatic structures upon oxidation. [...]
2
Content available remote

Studies of the soluble part of oxidised coals

100%
EN
Soluble products obtained from the oxidation of four types of coal, each characterised by different degree of coalification and different degree of sulphur content, are studied. The coals are oxidised with peracetic acid (PAA) and nitric acid. Analyses are performed by Atmospheric Pressure-Temperature Programmed Reduction (AP-TPR) and Fourier Transform Infrared Spectroscopy (FTIR). The soluble products contain much more sulphur than the insoluble products of oxidation. The products obtained from the reaction with HNO3 contain higher amounts of inorganic sulphur compounds, while those obtained from the reaction with PAA are characterised by an increased content of organic sulphur species.
EN
Products of reductive and non-reductive methylation of two high-sulphur coals (Mequinenza and Illinois No. 6) have been extracted by dichloromethane. It has been established that the efficiency of the transformation of coal to the products soluble in CH2Cl2 is higher for coals subjected to non-reductive methylation by the Liotta method than for those after reduction in the potassium/liquid ammonia system. The extracts and the extraction residues were subjected to elemental analysis, IR spectroscopy, and AP-TPR (Atmospheric Pressure-Temperature Programmed Reduction) measurements. It has been shown that the main species undergoing extraction by CH2Cl2 are aliphatic compounds or aromatic structures of low degree of condensation. The effect of the extraction on the sulphur groups in coal has been discussed.
EN
Solid and soluble products of THF and CH2Cl2 extraction of flame coal oxidised by four different oxidising agents (peroxyacetic acid (PAA), 5% HNO3, O2/Na2CO3, air/125 °C) were studied by elemental analysis and FTIR. The extraction yield with THF was much higher than that with CH2Cl2 for all samples. The greatest changes in elemental composition were in the extracts from coal oxidised by nitric acid. The sulphur content was lowest in extracts from coal oxidised with 5% HNO3 and PAA. FTIR confirmed that coal treatment with nitric acid incorporates nitrogen into the coal structure.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.