Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Relatively successful elsewhere, gene delivery aimed at the vasculature and kidney has made very little progress. In the kidney, the hurdles are related to the unique structure–function relationships of this organ and in the blood vessels to a variety of, mostly endothelial, factors making the delivery of transgenes very difficult. Among gene-therapeutic approaches, most viral gene delivery systems utilized to date have shown significant practical and safety-related limitations due to the level and duration of recombinant transgene expression as well as their induction of a significant host immune response to vector proteins. Recombinant adeno-associated virus (rAAV) vectors appear to offer a vehicle for safe, long-term transgene expression. rAAV-based vectors are characterized by a relative non-immunogenicity and the absence of viral coding sequences. Furthermore, they allow for establishment of long-term latency without deleterious effects on the host cell. This brief review addresses problems related to transgene-delivery to kidney and vasculature with particular attention given to rAAV vectors. The potential for gene therapy as a strategy for selected renal and vascular diseases is also discussed.
2
Content available remote

Heme oxygenase-1 expression in disease states.

100%
EN
Heme oxygenase-1 (HO-1) is an enzyme which catalyzes the rate-limiting step in heme degradation resulting in the formation of iron, carbon monoxide and biliverdin, which is subsequently converted to bilirubin by biliverdin reductase. The biological effects exerted by the products of this enzymatic reaction have gained much attention. The anti-oxidant, anti-inflammatory and cytoprotective functions associated with HO-1 are attributable to one or more of its degradation products. Induction of HO-1 occurs as an adaptive and beneficial response to several injurious stimuli including heme and this inducible nature of HO-1 signifies its importance in several pathophysiological disease states. The beneficial role of HO-1 has been implicated in several clinically relevant disease states involving multiple organ systems as well as significant biological processes such as ischemia-reperfusion injury, inflammation/immune dysfunction and transplantation. HO-1 has thus emerged as a key target molecule with therapeutic implications.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.