Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Bacteria of the genus Proteus are a common cause of urinary tract infections. The O-polysaccharide chain of their LPS (O-antigen) defines the serological specificity of these bacteria. Based on the immunospecificity of the O-antigens, two species, P. mirabilis and P. vulgaris, were classified into 49 O-serogroups, and more O-serogroups for strains of these species and P. penneri have been subsequently proposed. The lipopolysaccharide of P. mirabilis CCUG 19011 from serogroup O19 was degraded and under mildly acidic and mildly alkaline conditions. Polysaccharides thus obtained were studied by chemical methods, including O-deacetylation, sugar and methylation analyses, and 1H- and 13C-NMR spectroscopy. Antisera were obtained by immunization of New Zealand white rabbits with heat-killed bacteria. In serological studies, enzyme immunosorbent assay, passive hemolysis test, and inhibition of passive hemolysis were used.The following structure of the O-polysaccharide repeating unit was established. ->3)-beta-D-GlcpNAc-(1->3)alpha-D-GalpNAc4,6(R-Pyr)-(1->4)-alpha-D-GalpA-(1->3)-alpha-L-Rhap2Ac-(1-> where R-Pyr is (R)-1-carboxyethylidene (an acetal-linked pyruvic acid). This structure is significantly different from the O-polysaccharide structures of P. vulgaris, P. hauseri and P. penneri strains from the same Proteus serogroup O19. Conclusions: Based on immunochemical studies of the lipopolysaccharides, it is suggested 1) to keep P. vulgaris CCUG 4654 and P. penneri 31 in serogroup O19 as two subgroups, 2) to reclassify P. mirabilis CCUG 19011 into a new Proteus serogroup, O51, and 3) to classify serologically related strains, including P. vulgaris ATCC 49990, P. hauseri 1732-80 and 1086-80, P. penneri 15, and some other P. penneri strains, in yet another Proteus serogroup, O52. This structure is significantly different from the O-polysaccharide structures of P. vulgaris, P. hauseri and P. penneri strains from the same Proteus serogroup O19. Based on immunochemical studies of the lipopolysaccharides, it is suggested 1) to keep P. vulgaris CCUG 4654 and P. penneri 31 in serogroup O19 as two subgroups, 2) to reclassify P. mirabilis CCUG 19011 into a new Proteus serogroup, O51, and 3) to classify serologically related strains, including P. vulgaris ATCC 49990, P. hauseri 1732-80 and 1086-80, P. penneri 15, and some other P. penneri strains, in yet another Proteus serogroup, O52.
EN
In this paper we present the structure and describe serological properties of the O-specific polysaccharide of Proteus mirabilis O13 lipopolysaccharide, which contains a unique component, an amide of D-galacturonic acid (D-GalA) with an unusual amino acid N-[(R)-1-carboxyethyl]-L-lysine (alaninolysine, AlaLys). Selective chemical degradations of either GalA or AlaLys resulted in the loss of the serological reactivity of the polysaccharide with anti-O serum against P. mirabilis O13. Neither synthetic stereoisomers of AlaLys nor the isolated amide of GalA with AlaLys inhibited the reaction of the O-antiserum with the homologous lipopolysaccharide. The O-antiserum did not cross-react with the lipopolysaccharide of Providencia alcalifaciens O23 containing an amide of D-glucuronic acid with AlaLys. These data showed that both uronic acid and amino acid components of the amide play an important role in manifesting the P. mirabilis O13-specificity, but the full specific epitope also includes also another OPS component(s). A cross-reactivity of anti-O13 serum with some other P. mirabilis strains was observed and attributed to a common heat-stable antigen(s) different from the lipopolysaccharide.
EN
Analysis by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy demonstrated that the O-specific polysaccharides of P. mirabilis PrK 42/57 and P. vulgaris PrK 43/57 are structurally similar to that of P. vulgaris PrK 44/57 and different from the polysaccharide of P. mirabilis PrK 41/57 studied earlier. The lipopolysaccharides of these strains were tested using enzyme immunosorbent assay, passive hemolysis and Western blot with O-antisera against P. mirabilis 42/57 and P. vulgaris 43/57 and 44/57, as well as with cross-absorbed O-antisera. The chemical and serological data revealed the basis for combining the four strains into Proteus serogroup O23 and division of this serogroup to three subgroups, one for P. vulgaris 43/57 and 44/57 and two others for P. mirabilis 41/57 and 42/57.
EN
Introduction: Proteus rods are currently subdivided into five named species, i.e. Proteus mirabilis, P. vulgaris, P. penneri, P. hauseri, and P. myxofaciens, and three unnamed Proteus genomospecies 4 to 6. Based on the serospecificity of the lipopolysaccharide (LPS; O-antigen), strains of P. mirabilis and P. vulgaris were divided into 49 O-serogroups and 11 additional O-serogroups were proposed later. About 15 further O-serogroups have been proposed for the third medically important species, P. penneri. Here the serological classification of P. vulgaris strain TG 251, which does not belong to these serogroups, is reported. Serological investigations also allowed characterization of the epitope specificity of its LPS. Materials and Methods: Purified LPSs from five Proteus strains were used as antigens in enzyme immunosorbent assay (EIA), SDS/PAGE, and Western blot and alkali-treated LPSs in the passive immunohemolysis (PIH) test, inhibition of PIH and EIA, and absorption of the rabbit polyclonal O-antisera with the respective LPS. Results: The serological studies of P. vulgaris TG 251 LPS indicated the identity of its O-polysaccharide with that of P. penneri O65. The antibody specificities of P. vulgaris TG 251 and P. penneri O65 O-antisera, were described. Conclusions: P. vulgaris TG 251 was classified to the Proteus O65 serogroup. Two disaccharide-associated epitopes present in P. vulgaris TG 251 and P. penneri O65 LPSs are suggested to be responsible for cross-reactions with three heterologous Proteus strains.
EN
Introduction: Bacteria of the genus Proteus are a common cause of urinary tract infections. The O-polysaccharide (OPS) chain of their lipopolysaccharide (LPS) defines the serological specificity of strains. Based on the OPS structures and the immunospecificity of the LPS, Proteus strains have been classified into 74 O-serogroups. Materials and Methods: The OPS of P. mirabilis TG 115 was obtained by mild acid degradation of the LPS and studied by 1H and 13C nuclear magnetic resonance spectroscopy. Antisera were raised by immunization of rabbits with heat-killed bacteria. Serological studies were performed using enzyme immunosorbent assay, passive immunohemolysis, inhibition experiments, absorption of O-antisera, and Western blot.Results: The following structure of the P. mirabilis TG 115 OPS was established: 2)--D-GalpA-(13)--D-GalpNAc-(14)--D-GalpA-(13)--D-GlcpNAc-(1 The same structure has been reported previously for the O-polysaccharides of P. mirabilis CCUG 10701 (O74) and P. mirabilis 41/57 (O23), except that they contain O-acetyl groups in non-stoichiometric quantities. Serological studies showed the antigenic identity of the three strains and their close serological relatedness to P. vulgaris 44/57. Conclusions: Based on the OPS structures and serological data, it is suggested to classify P. mirabilis 41/57, TG 115, and CCUG 10701 into one subgroup and P. mirabilis 42/57 and P. vulgaris 43/57 and 44/57 into another subgroup of the Proteus O23 serogroup.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.