Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We report results of EPR measurements of activated carbon fibers. Experiments made for pristine activated carbon fibers and activated carbon fibers with adsorbed molecules (CCl_4, C_6H_5NO_2, and H_2O) confirmed the localized character of paramagnetic centers observed in the system. Pristine activated carbon fibers are characterized by single Lorentzian line. Broader component of EPR signal appears when guest molecules are adsorbed in nanopores. The strongest localization is observed for water-filled activated carbon fibers nanopores (with hydrophobic pore walls) where changes in distance between nanographite particles were monitored by the g-shift to higher values. This process is related to stronger spin-orbit interaction of electrons trapped at nanographite particles compressed by guest molecules.
2
Content available remote

Wetting of Nanostructurized Sapphire and Gold Surfaces

100%
EN
We present the results of preliminary experiments regarding research on the contact angle measurements of various liquids on solid surfaces with different morphology. The aim was to get insight into the dependence of wetting phenomena on the nanoscale surface roughness. Flat and nanostructurized surfaces of gold and sapphire were used in the experiments. Four liquids - bromobenzene, water, mercury, and gallium - covering a broad range of surface tension values were used to check how varying roughness influences wetting in the systems with different adhesion/cohesion ratio. Structurization was anisotropic, which resulted in the very interesting behaviour of the examined liquids on the selected surfaces. Significant change of the wetting properties was observed as well as a strong dependence on the surface morphology.
EN
We report the observations of electron paramagnetic resonance and impedance measurements of graphene oxide and reduced graphene oxide performed in the wide temperature range in order to get insight into the electronic properties of graphene-based materials and the role of oxygen functionalities in the charge carrier transport phenomena. In such systems the strong spin localization, hopping charge carrier transport as well as the formation of adsorption layers are observed, all the phenomena changing significantly after the heavily oxidized graphene is reduced.
EN
In the following we present the role of surface scattering at Au/Co and Au/Ni-Fe interfaces in Ni-Fe/Au/Co/Au multilayers deposited in different temperatures. Specularity parameter, which describes the electron scattering, is calculated from fitting in situ collected conductance data with the Fuchs-Namba-Tesanovic model. Application of the parallel resistors model enabled to depict changes between Au/Co and Au/Ni-Fe interfaces within multilayers for each repetition. The correlation between enhanced grain boundary scattering for higher deposition temperatures and surface roughness of Ni-Fe/Au/Co/Au multilayers is found.
EN
An advanced deposition technique known as glancing angle deposition was used to fabricate randomly seeded magnetic cobalt columnar nanostructures. The existence of nanocolumns was confirmed by the cross-section scanning electron microscopy. The evolution in the magnetization reversal mechanism as a function of the film thickness was investigated. The coercivity H_{C} and M_{R}/M_{S} ratio (where M_{R} and M_{S} denote the remanent and saturation magnetization, respectively), derived from the magnetic hysteresis loops, are discussed as a function of the angle between the external magnetic field and the surface normal. The direction of the magnetization easy/hard axis and the columns inclination angle were determined on the basis of the angular dependences of the H_{C} and the M_{R}/M_{S}. A crossover from the coherent rotation, based on the Stoner-Wohlfarth model, to the curling reversal mode was observed.
EN
Host-guest interactions can be the unique method of spin manipulation in nanoscale. Strong changes in spin localization are generated when potential barriers between nanographitic units of activated carbon fibers are modified by interaction with adsorbed molecules. Stronger modifications occur when dipolar guest molecules are stimulated with external electric field. We report experimental results which show the influence of electric field on the spin localization in activated carbon fibers.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.