Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 16

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Photovoltaic spectra of Pb_{1-x}Mn_{x}Se homojunctions have been measured in the infrared spectral region within the temperature range 15-300 K. The junctions have been formed by cadmium diffusion into the p-type Pb_{1-x}Mn_{x}Se crystals with manganese content 0 ≤ x ≤ 0.08. From the positions of the photovoltaic maxima the energy band gap of the diode material has been determined. A phenomenological expression describing the energy band gap of Pb_{1-x}Mn_{x}Se as a function of temperature and crystal composition has been proposed. In diodes containing high manganese content x = 0.06 and x = 0.08 a second photovoltaic maximum caused by indirect optical transitions between the main conduction band and the secondary valence band located along the ∑-axis of the Brillouin zone has been observed.
EN
New trends in the field of thermoelectrics are discussed for PbTe-based semiconductor thermoelectric materials exhibiting density of states engineering effects strongly enhancing thermoelectric power (PbMnTe) and spontaneous formation of nano-scale two-phase crystal structures (PbTeCdTe) – technologically scalable realization of electron crystal - phonon glass concept of new thermoelectric materials.
EN
The recent successful growth of single, bulk Pb_{1-x}Cd_{x}Te crystals by self-selecting vapor transport method at the Institute of Physics of the Polish Academy of Sciences in Warsaw opened new opportunities to study the physical properties of this interesting material in detail. In this work we report the preliminary results of X-ray powder diffraction studies performed on a set of Pb_{1-x}Cd_{x}Te solid solutions (where x ≤ 0.056) at high temperatures (295 K ≤ T ≤ 1100 K) and analyzed with the Rietveld refinement. Our results demonstrate the necessity of some correction of the relevant phase diagram and of the solubility limit, known from the literature.
EN
In this communication we report successful growth of monocrystalline cubic ZnS and monocrystalline and polycrystalline cubic and wurtzite films of CdS by atomic layer epitaxy. Structural and optical properties of these films are analysed. ZnS (and CdS/ZnS) films grown on GaAs substrate are cubic. Atomic layer epitaxy grown films provide several advantages over ZnS and CdS materials grown by other techniques, especially compared to bulk material, which is grown at higher temperatures. First results for ZnS/CdS/ZnS quantum well structures are also discussed.
EN
We demonstrate that ZnSe:Cr is an excellent solid state laser material for mid-infrared region with a broad amplification band from 2.2 μm to 3 μm, and with a high quantum efficiency of a radiative recombination. 46% external total efficiency and 56 mW threshold power were achieved, when pumped with a CW YAlO:Ho laser at resonant excitation conditions. Such laser system can have widespread applications in medicine as laser scalpels with regulated cutting depth. We further demonstrate a stimulated emission under Cr2+ to 1+ photo-ionization pumping. The latter opens chances for laser emission under carrier injection conditions.
EN
Recently we demonstrated growth of monocrystalline ZnO films by atomic layer epitaxy in the gas flow variant using inorganic precursors. In this study, we discuss properties of ZnO films grown with organic precursors. Successful Mn doping of the ZnO films during the growth was achieved using the Mn-thd complex. Secondary ion mass spectroscopy and X-ray investigations reveal the contents of Mn up to about 20% of the cationic component.
EN
We report on fabrication of hybrid inorganic-on-organic thin film structures with polycrystalline zinc oxide films grown by atomic layer deposition technique. ZnO films were deposited on two kinds of thin organic films, i.e. pentacene and poly(dimethylosiloxane) elastomer with a carbon nanotube content (PDMS:CNT). Surface morphology as well as electrical measurements of the films and devices were analyzed. The current density versus voltage (I-V) characteristics of ITO/pentacene/ZnO/Au structure show a low-voltage switching phenomenon typical of organic memory elements. The I-V studies of ITO/PDMS:CNT/ZnO/Au structure indicate some charging effects in the system under applied voltages.
EN
A single crystal of (Pb,Cd)Te solid solution with Cd content equal to 5% was grown by self-selecting vapour growth technique and characterized by powder X-ray diffraction using the X'Pert PANalytical diffractometer and Cu K_{α₁} radiation. The X-ray diffraction pattern refinement demonstrated the fcc structure of the rock-salt type of investigated sample, no precipitates or other crystal phases were detected. The sample chemical composition was determined on the basis of measured lattice parameter value. Next, the Young modulus and microhardness were determined by the nanoindentation for carefully prepared, (001), (011) and (111)-oriented single crystal plates. The slight anisotropy of two parameters mentioned above has been found and compared with available literature data.
EN
Antiferromagnetic interlayer exchange coupling in semiconductor EuS-PbS-EuS ferromagnetic trilayers grown on PbS (001) substrates with ultrathin (0.6-1.2 nm) nonmagnetic PbS spacers is studied by SQUID magnetometry and model calculations. Analysis of the experimentally observed magnetic field and temperature dependence of the magnetization of EuS-PbS structures reveals a rapid decrease in the interlayer coupling energy with increasing temperature indicating a temperature dependence of the microscopic coupling mechanism acting in these all-semiconductor ferromagnetic/nonmagnetic multilayers.
EN
PbTe and its solid solution (Pb,Cd)Te containing 2% of CdTe and PbTe grown by self-selecting vapour growth technique were investigated by inelastic X-ray scattering using synchrotron radiation. The ID28 beamline at ESRF with the incident photon energy of 17794 eV and the energy resolution of 3 meV was applied for that purpose. The measurements were performed at room temperature along [001]-type high symmetry direction in the Brillouin zone. In spite of a very low energy of phonon branches they can be determined by inelastic X-ray scattering with a high accuracy. The transversal acoustic phonon dispersion obtained by inelastic X-ray scattering corresponds well to those resulting from inelastic neutron scattering measurements and ab initio calculations. Apart from expected structures corresponding to the bulk phonons an additional scattering related to the crystal surface properties was observed in the inelastic X-ray scattering spectra. The analysis performed with the use of secondary ion mass spectroscopy technique demonstrated a presence of a thin oxide layer at sample surfaces.
EN
Single crystals of the (Pb,Cd)Te solid solution with CdTe content up to 9% were grown by self-selecting vapour growth method and investigated by powder X-ray diffraction, inelastic neutron scattering, and nanoindentation measurements. The analysis of the linear part of the LA phonon dispersion, determined by the inelastic neutron scattering demonstrated an increase of the sound velocity (thus the hardening of the crystal lattice) with an increase of CdTe content in the solid solution. An important increase of microhardness value for (Pb,Cd)Te was directly confirmed by results of nanoindentation measurements performed for a few samples with various chemical composition.
EN
Temperature dependence of current-voltage I-V characteristics and resistivity is studied in ferromagnetic PbS-EuS semiconductor tunnel structures grown on n-PbS (100) substrates. For the structures with a single (2-4 nm thick) ferromagnetic EuS electron barrier we observe strongly non-linear I-V characteristics with an effective tunneling barrier height of 0.3-0.7 eV. The experimentally observed non-monotonic temperature dependence of the (normal to the plane of the structure) electrical resistance of these structures is discussed in terms of the electron tunneling mechanism taking into account the temperature dependent shift of the band offsets at the EuS-PbS heterointerface as well as the exchange splitting of the electronic states at the bottom of the conduction band of EuS.
EN
Current-voltage characteristics and temperature dependence of differential conductance were studied in lithographically patterned (lateral dimensions from 10 x 10 μm^2 to 100 x 100 μm^2) ferromagnetic EuS-PbS-EuS microstructures. Below the ferromagnetic transition temperature a 4% decrease in the structure conductance was observed for mutual antiferromagnetic orientation of magnetization vectors of ferromagnetic EuS layers.
EN
Bulk monocrystals of Pb_{1-x}Cd_{x}Te, with the Cd content x up to 0.11, were grown by physical vapour transport method. The structural, electrical and optical properties of these ternary crystals were studied experimentally and theoretically. All investigated samples exhibit rock-salt structure and high crystal quality, which was confirmed by X-ray rocking curve width parameter of about 100 arcsec. The decrease of the lattice parameter with increasing Cd content x was found experimentally, in agreement with ab initio calculations. The band structures of Pb_{1-x}Cd_{x}Te mixed crystals for x values up to 0.2 were calculated using tight binding approach. The calculated band gap in the L-point increases with the Cd content in qualitative agreement with photoluminescence measurements in the infrared. For all studied Pb_{1-x}Cd_{x}Te samples, the Hall effect and electrical conductivity measurements, performed in the temperature range from 4 to 300 K, revealed p-type conductivity.
EN
Magnetic properties of semiconductor EuS(t)-PbS(d)-EuS(t) ferromagnetic trilayers (t=30÷300Å and d=7.5÷70Å) grown on n-type monocrystalline PbS (100) substrate were studied by SQUID magnetometry and ferromagnetic resonance technique yielding, in particular, the dependence of the ferromagnetic Curie temperature on the thickness of the EuS layer. Structural parameters of layers were examined by X-ray powder diffraction analysis. A high structural quality of the substrate and the multilayer was verified by the measurements of the X-ray rocking curve width indicating the values of the order of 100 arcsec and by atomic force microscopy revealing the presence on the cleft PbS surface regions practically flat in the atomic scale over the area of 1×0.1μm^2.
EN
Magnetic and structural properties of EuS-SrS semiconductor multilayers were studied by SQUID and magneto-optical Kerr effect magnetometry techniques and by X-ray diffraction method. The multilayers composed of monocrystalline, lattice matched ferromagnetic EuS layers (thickness 35-50Å) and nonmagnetic SrS spacer layers (thickness 45-100Å) were grown epitaxially on KCl (001) substrates with PbS buffer layer. Ferromagnetic transition in EuS-SrS multilayers was found at the Curie temperature T_c=17 K. The multilayers exhibit only weak in-plane magnetic anisotropy with [110] easy magnetization axis. Coercive field of EuS-SrS multilayers shows a linear increase with decreasing temperature. Magneto-optical mapping of magnetic hysteresis loops of the multilayers revealed good spatial homogeneity of their magnetic properties.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.