Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Acta Physica Polonica A
|
2008
|
vol. 114
|
issue 6A
A-175-A-182
EN
Propagation and reflection of plane elastic waves in the acousto-optic crystals tellurium dioxide and calomel as well as in the ferroelectric material barium titanate is examined in the paper. The reflection of the waves from a free and flat boundary separating the crystal and the vacuum is investigated in the (001) planes of TeO_2, Hg_2Cl_2, and BaTiO_3 in the case of glancing acoustic incidence on the boundary. The analysis shows that as much as two elastic waves may be reflected from the crystal surface. Energy flow of one of the reflected waves in paratellurite and calomel propagates in a quasi-back direction with respect to the incident energy flow, so that both energy flows are separated by an angle as narrow as a few degrees. It is found that a relative intensity of the unusually reflected wave in the acousto-optic crystals may be close to a unit in a wide variety of crystal cuts. Possible applications of the examined phenomena in acousto-optic devices are discussed in the presentation.
EN
Generation of acoustic shear waves in crystals is one of the main problem of acousto-optics. Launching of the shear waves is much more difficult than the longitudinal modes because of difficulties related to acoustic contact and also because of problems arising from matching of acoustic and electric parameters of piezoelectric transducer. We obtained the transverse waves as a result of longitudinal-shear modes reflection in a crystal. Crystals having the required effect should possess a strong anisotropy of their elastic properties to realize the effective acoustic mode transformation. In this paper, one of the important cases of the acoustic waves reflection is investigated theoretically and experimentally. The research was carried out in the crystal of paratellurite.
EN
We present results on theoretical and first experimental investigation of a new regime of acousto-optic interaction existing in acoustically anisotropic medium. We defined the new regime as "semi-collinear" or "mixed interaction" since it combined properties of the traditional non-collinear diffraction and the pure collinear interaction. The peculiar phenomenon was registered in the tellurium dioxide crystal due to the extremely strong elastic anisotropy of the material. Application of a specific cut of the crystal provided observation of the effect in the middle infrared at the optical wavelength 3.39 μm and at the acoustic frequencies limited to 300 MHz. The observed interaction was characterized by a non-collinear propagation of incident light with respect to acoustic energy flow and simultaneously a collinear propagation of diffracted radiation along the acoustic energy flow. A brief theoretical analysis of the interaction based on wave vector diagrams and two-dimensional coupled wave equations is included in the presentation. Finally, we describe in the paper, the setup and basic details of the carried out acousto-optic experiment.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.