Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Inhibition of IRE1 (inositol requiring enzyme-1), the major signaling pathway of endoplasmic reticulum stress, significantly decreases tumor growth and proliferation of glioma cells. To elucidate the role of IRE1- mediated glioma growth, we studied the expression of a subset genes encoding for TNF (tumor necrosis factor)- related factors and receptors and their hypoxic regulation in U87 glioma cells overexpressing dominant-negative IRE1 (dnIRE1). We demonstrated that the expression of TNFAIP1, TNFRSF10D, TNFRSF21, TNFRSF11B, TNFSF7, and LITAF genes is increased in glioma cells with modified IRE1; however, TNFRSF10B, TRADD, and TNFAIP3 is down-regulated in these cells as compared to their control counterparts. We did not find TNFRSF1A gene expression to change significantly under this experimental condition. In control glioma cells, hypoxia leads to the up-regulated expression of TNFAIP1, TNFAIP3, TRADD, and TNFRSF10D genes and the concomitant down-regulation of TNFRSF21, TNFRSF11B, and LITAF genes; while, TNFRSF10B and TNFRSF1A genes are resistant to hypoxic treatment. However, inhibition of IRE1 modifies the hypoxic regulation of LITAF, TNFRSF21, TNFRSF11B, and TRADD genes and introduces hypoxia-induced sensitivity to TNFRSF10B, TNFRSF1A, and TNFSF7 gene expressions. Furthermore, knockdown by siRNA of TNFRSF21 mRNA modifies the hypoxic effect on the IRE1-dependent rate of proliferation and cell death in U87 glioma cells. The present study demonstrates that fine-tuned manipulation of the expression of TNF-related factors and receptors directly relating to cell death and proliferation, is mediated by an effector of endoplasmic reticulum stress, IRE1, as well as by hypoxia in a gene-specific manner. Thus, inhibition of the kinase and endoribonuclease activities of IRE1 correlates with deregulation of TNF-related factors and receptors in a manner that is gene specific and thus slows tumor growth.
EN
Previously we have shown that hypoxia strongly induces the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) genes in several cancer cell lines via a HIF-dependent mechanism. In this paper we studied the expression and hypoxic regulation of PFKFB-4 and PFKFB-3 mRNA as well as its correlation with HIF-1α, HIF-2α, VEGF and Glut1 mRNA expression in the pancreatic cancer cell line Panc1 and two gastric cancer cell lines MKN45 and NUGC3. This study clearly demonstrated that PFKFB-3 and PFKFB-4 mRNA are expresses in MKN45, NUGC3 and Panc1 cancers cells and that both genes are responsive to hypoxia in vitro. However, their basal level of expression and hypoxia responsiveness vary in the different cells studied. Particularly, PFKFB-3 mRNA is highly expressed in MKN45 and NUGC3 cancer cells, with the highest response to hypoxia in the NUGC3 cell line. The PFKFB-4 mRNA has a variable low basal level of expression in both gastric and pancreatic cancer cell lines. However, the highest hypoxia response of PFKFB-4 mRNA is found in the pancreatic cancer cell line Panc1. The basal level of PFKFB-4 protein expression is the highest in NUGC3 gastric cancer cell line and lowest in Panc1 cells, with the highest response to hypoxia in the pancreatic cancer cell line. Further studies showed that PFKFB-3 and PFKFB-4 gene expression was highly responsive to the hypoxia mimic dimethyloxalylglycine, a specific inhibitor of HIF-α hydroxylase enzymes, suggesting that the hypoxia responsiveness of PFKFB-3 and PFKFB-4 genes in these cell lines is regulated by the HIF transcription complex. The expression of VEGF and Glut1, which are known HIF-dependent genes, is also strongly induced under hypoxic conditions in gastric and pancreatic cancer cell lines. The levels of HIF-1α protein are increased in both gastric and pancreatic cancer cell lines under hypoxic conditions. However, the basal level of HIF-1α as well as HIF-2α mRNA expression and their hypoxia responsiveness are different in the MKN45 and NUGC3 cancer cells. Thus, the expression of HIF-1α mRNA is decreased in both gastric cancer cell lines treated by hypoxia or dimethyloxalylglycine, but HIF-2α mRNA expression is not changed significantly in NUGC3 and slightly increased in MKN45 cells. Expression of PFKFB-4 and PFKFB-3 was also studied in gastric cancers and corresponding nonmalignant tissue counterparts from the same patients on both the mRNA and protein levels. The expression of PFKFB-3 and PFKFB-4 mRNA as well as PFKFB-1 and PFKFB-2 mRNA was observed in normal human gastric tissue and was increased in malignant gastric tumors. The basal level of PFKFB-4 protein expression in gastric cancers was much higher as compared to the PFKFB-3 isoenzyme. In conclusion, this study provides evidence that PFKFB-4 and PFKFB-3 genes are also expressed in gastric and pancreatic cancer cells, they strongly respond to hypoxia via a HIF-1α dependent mechanism and, together with the expression of PFKFB-1 and PFKFB-2 genes, possibly have a significant role in the Warburg effect which is found in malignant cells.
EN
Recently, we have shown that PFKFB4 gene which encodes the testis isoenzyme of PFKFB is also expressed in the prostate and hepatoma cancer cell lines. Here we have studied expression and hypoxic regulation of the testis isoenzyme of PFKFB4 in several malignant cell lines from a female organ - the mammary gland. Our studies clearly demonstrated that PFKFB4 mRNA is also expressed in mammary gland malignant cells (MCF-7 and T47D cell lines) in normoxic conditions and that hypoxia strongly induces it expression. To better understand the mechanism of hypoxic regulation of PFKFB4 gene expression, we used dimethyloxalylglycine, a specific inhibitor of HIF-1α hydroxylase enzymes, which strongly increases HIF-1α levels and mimics the effect of hypoxia. It was observed that PFKFB4 expression in the MCF7 and T47D cell lines was highly responsive to dimethyloxalylglycine, suggesting that the hypoxia responsiveness of PFKFB4 gene in these cell lines is regulated by HIF-1 proteins. Moreover, desferrioxamine and cobalt chloride, which mimic the effect of hypoxia by chelating or substituting for iron, had a similar stimulatory effect on the expression of PFKFB mRNA. In other mammary gland malignant cell lines (BT549, MDA-MB-468, and SKBR-3) hypoxia and hypoxia mimics also induced PFKFB4 mRNA, but to variable degrees. The hypoxic induction of PFKFB4 mRNA was equivalent to the expression of PFKFB3, Glut1, and VEGF, which are known HIF-1-dependent genes. Hypoxia and dimethyloxalylglycine increased the PFKFB4 protein levels in all cell lines studied except MDA-MB-468. Through site-specific mutagenesis in the 5'-flanking region of PFKFB4 gene the hypoxia response could be limited. Thus, this study provides evidence that PFKFB4 gene is also expressed in mammary gland cancer cells and strongly responds to hypoxia via an HIF-1α dependent mechanism. Moreover, the PFKFB4 and PFKFB3 gene expression in mammary gland cancer cells has also a significant role in the Warburg effect which is found in all malignant cells.
EN
Inhibition of ERN1/IRE1α (endoplasmic reticulum to nucleus signaling 1/inositol requiring enzyme-1α), the major signaling pathway of endoplasmic reticulum stress, significantly decreases tumor growth. We have studied the expression of transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F1), and HOXC6 (homeobox C6) in U87 glioma cells overexpressing dominant-negative ERN1/IRE1α defective in endoribonuclease (dnr-ERN1) as well as defective in both kinase and endonuclease (dn-ERN1) activity of ERN1/IRE1α. We have demonstrated that the expression of all studied genes is decreased at the mRNA level in cells with modified ERN1/IRE1α; TBX3, however, is increased in these cells as compared to control glioma cells. Changes in protein levels of E2F8, HOXC6, ATF3, and TBX3 corresponded to changes in mRNAs levels. We also found that two mutated ERN1/IRE1α have differential effects on the expression of studied transcripts. The presence of kinase and endonuclease deficient ERN1/IRE1α in glioma cells had a less profound effect on the expression of E2F8, HOXC6, and TBX3 genes than the blockade of the endoribonuclease activity of ERN1/IRE1α alone. Kinase and endonuclease deficient ERN1/IRE1α suppresses ATF3 and FOXF1 gene expressions, while inhibition of only endoribonuclease of ERN1/IRE1α leads to the up-regulation of these gene transcripts. The present study demonstrates that fine-tuning of the expression of proliferation related genes is regulated by ERN1/IRE1α an effector of endoplasmic reticulum stress. Inhibition of ERN1/IRE1α, especially its endoribonuclease activity, correlates with deregulation of proliferation related genes and thus slower tumor growth.
EN
Inhibition of ERN1 (endoplasmic reticulum to nuclei 1), the major signalling pathway of endoplasmic reticulum stress, significantly decreases tumor growth. We have studied the expression of tumor protein 53 (TP53)- related genes such as TOPORS (topoisomerase I binding, arginine/serine-rich, E3 ubiquitin protein ligase), TP53BP1 (TP53 binding protein 1), TP53BP2, SESN1 (sestrin 1), NME6 (non-metastatic cells 6), and ZMAT3 (zinc finger, Matrin-type 3) in glioma cells expressing dominantnegative ERN1 under baseline and hypoxic conditions. We demonstrated that inhibition of ERN1 function in U87 glioma cells resulted in increased expression of RYBP, TP53BP2, and SESN1 genes, but decreased expression of TP53BP1, TOPORS, NME6, and ZMAT3 genes. Moreover, inhibition of ERN1 affected hypoxia-mediated changes in expression of TP53-related genes and their magnitude. Indeed, hypoxia has no effect on expression of TP53BP1 and SESN1 in control cells, while resulted in increased expression of these genes in cells with inhibited ERN1 function. Magnitude of hypoxia-mediated changes in expression levels of RYBP and TP53BP2 was gene specific and more robust in the case of TP53BP2. Hypoxiamediated decrease in expression levels of TOPORS was more prominent if ERN1 was inhibited. Present study demonstrates that fine-tuning of the expression of TP53- associated genes depends upon endoplasmic reticulum stress signaling under normal and hypoxic conditions. Inhibition of ERN1 branch of endoplasmic reticulum stress response correlates with deregulation of p53 signaling and slower tumor growth.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.